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Abstract

In the field of Computer Science, Algorithms constitute the core of any nontrivial com-

putation. Thus, we are interested in the analysis of the design space of recent algorithms

that perform well in practice. To do so, we choose two distinct areas of Computer Sci-

ence, Graph Connectivity, and Authentication Systems. Moreover, we compose several

different techniques and present new algorithms to solve efficiently few problems in the

above areas. Furthermore, we conduct a thorough empirical analysis by implementing

the selected algorithms and highlight their merits and weaknesses.

Graphs are fundamental mathematical structures to represent pairwise relationships

between objects. Therefore, a graph G = (V,E) is very convenient tool to describe ob-

jects, by vertices V and relations between objects, edges E. The pairwise relationship

set E contains ordered (resp., unordered) pair of vertices for directed (resp., undirected)

graph. In many real-life applications, such an abstract representation may be needed.

Edge and vertex connectivity are fundamental concepts in graph theory with numer-

ous practical applications. For example, in the construction of reliable communication

networks, analysis of the structure of networks, transportation, production, scheduling,

power engineering, social networks analysis, etc. Hence, our concern is to analyze the

connectivity structure of a given directed graph.

Our work on Graph Connectivity is motivated by recent results on 2-connectivity

for directed graphs. In particular, we revisit the problem of computing the 2-edge and

the 2-vertex-connected blocks and components of a directed graph G. Specifically, we

compare two approaches that give O(m+n)-time algorithms, where m is the number of

edges and n is the number of vertices of G. The first approach is based on a two-level

decomposition of G using auxiliary graphs, and the second approach is based on loop

nesting information. Our experiments indicate that the loop-nesting-based algorithms

are not only faster in practice but also much more efficient in terms of memory usage,

especially for sparse graphs. This makes them suitable for the analysis of large-scale

graphs. We also note that the performance of the loop nesting computation degrades

as the graph density increases, and we propose variants that alleviate this problem.

We believe that these variants may be of independent interest since the loop nesting
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information is useful in a variety of applications. Then, we consider the the compu-

tation of the 2-edge and the 2-vertex-connected components, and investigate how the

recent O(n2)-time algorithms and some of its variants that apply to the hierarchical

graph sparsification technique, perform in practice. Despite their superior asymptot-

ical worst-case running times, we observe that these algorithms are competitive with

simpler O(mn)-time algorithms, based on dominator tree decomposition, only in dense

worst-case instances.

In addition, we also consider the critical node detection problem in directed graphs.

Given a directed graph G and a parameter k, we wish to remove a set S ⊆V of at most

k vertices of G such that the residual graph G \ S has minimum pairwise strong con-

nectivity. This problem is NP-Hard, and thus we are interested in practical heuristics.

We present a sophisticated linear-time algorithm for the k = 1 case, and, based on this

algorithm, give an efficient heuristic for the general case. Then, we conduct a thorough

experimental evaluation of various heuristics for the critical node detection problem.

Our experimental results suggest that our heuristic performs very well in practice, both

in terms of running time and of solution quality.

The next problem that we focused is the Authentication Systems for security mod-

els. Authentication System is an essential tool for privacy and security such that it

allows the user to get access into the system by verifying the user’s identity. There are

a large number of applications for Authentication Systems, due to the emerging needs

of privacy and security in today’s digital society. Many people engage in the digital

world without being concerned about the privacy and security of their data. One of the

reason can be they are using the devices, which has limited hardware configuration and

unable to run the security algorithms. Therefore, we concentrate on designing a new

Authentication System for a security model that is suitable for low-end devices.

Handwritten Signature Verification is a biometric security method widely used to

verify automatically the authenticity of a user signature. In offline systems, the hand-

written signature (represented as an image) is taken from a scanned document, while

in online systems, pen tablets are used to record the signature, characterized by several
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dynamics (e.g., its position, pressure and velocity). We present a new online Hand-

written Signature Verification system that is designed to run on low-end devices. Then,

we report the experimental observation of our system on different online handwritten

signature datasets with low-end mobile devices.
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1
Introduction

Many researchers are working in the field of Computer Science to solve real life prob-

lems. The solution presented for a given problem is strongly influenced by the re-

searcher preferences in designing algorithms. It is a challenging job to provide an

efficient solution for a problem. An algorithm is an essence of the problem-solving

technique; different researchers can develop several different types of algorithms for

a single problem. Hence, even a single problem may have various solutions. In this

dissertation, we are interested in the design space of algorithms that perform well in

practice. To do so, we choose two different areas of Computer Science, “Graph Connec-

tivity” and “Authentication Systems”. We then choose and implement newly proposed

algorithms that perform well in practice in these areas. Moreover, we also compose

several different techniques and present some novel algorithms to solve efficiently a

few problems in those selected areas. Furthermore, we conduct a thorough empirical

analysis to highlight the merits and weaknesses of each algorithm.

Graph Connectivity focuses on the behavior of the algorithms that compute the

structural property of the graphs, and the Authentication System is about the security

and privacy that allows the user to get into the system by using his/her online handwrit-

ten signature. In this chapter, we present the historical background of Graph Theory,

Graph Connectivity, Security and Authentication Systems. We also provide an overview

of available recent algorithms, the motivation for our work, and its contributions. Fi-

nally, we outline the organization of this thesis.
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Chapter 1. Introduction

1.1 Graph Theory

1.1.1 History and Background

Graph Theory originated from the Seven Bridges of Königsberg problem, in 1735.

The great Swiss mathematician Leonhard Euler (1707−1783) studied the Köingsberg

bridge connectivity problem introducing the notion of Eulerian graph, which made him

the father of graph theory. Based on Euler’s formula, L’Huillier [108] introduced the

concept of Topology, which was later influenced Listing [109] and Cauchy [31]. After

a century, in 1840, A.F Möbius presented the idea of a complete graph and bipartite

graph. Eventually, in 1845, the German physicist Gustav Kirchhoff discovered the con-

cept of Tree Graph [97], i.e., a connected graph without cycles, and employed graph

theoretical ideas in the calculation of currents in electrical networks or circuits. This

established an attractive connection between Graph Theory and Linear Algebra.

Subsequently, in 1856, William R. Hamilton (1805−1865) and Thomas P. Kirkman

(1806− 1895) studied the cycles on polyhedral, tours that visited certain sites exactly

once and then invented the concept of Hamiltonian graph [98]. Cayley [50] studied on

specific analytical forms from differential calculus to study the trees, which had many

implications in theoretical Chemistry. His work leads to the invention of Enumera-

tive Graph Theory. Cayley applied his results to trees to the contemporary studies on

Chemical Composition [32]. The combination of ideas from Mathematics to Chemistry

became part of the standard terminology of Graph Theory. Sylvester (1806−1897) in

1878 drew an equivalence relation between “Quantic Invariants” and Covariants of Al-

gebra and Molecular Diagrams [153]. In 1941, Ramsey worked on colorations, which

is the root of another branch of graph theory called Extremal Graph Theory [153]. In

1936, Dénes König published the first textbook on Graph Theory [173]. A later, Frank

Harary wrote another book in 1969 [80]. His text was enormously popular and enabled

mathematicians, electrical engineers, physicist, chemists and social scientists to talk to

each other. Moreover, Harary donated all of the royalties from his book to fund the

Pólya Prize [135].

4



1.1. Graph Theory

Thus, the autonomous development of Topology from 1860 to 1930 fertilized Graph

Theory and the common development of Graph Theory and Topology came from the

use of the techniques of Modern Algebra. The introduction of probabilistic methods in

Graph Theory, precisely in the study of Graph Connectivity, gave escalation to another

branch, known as Random Graph Theory, which has been a prolific source of graph-

theoretic results. The study of asymptotic Graph Connectivity gave rise to Random

Graph Theory.

1.1.2 Motivation

Graphs are very convenient tools to describe objects, by vertices and relations between

objects, edges. In many real-life applications, such an abstract representations may be

needed. Nowadays, it is in use in many branches of mathematics, for example, Group

Theory, Matrix Theory, Numerical Analysis, Probability, Topology, Combinatorics, etc.

Also, it has been extensively applied in other scientific areas such as Information The-

ory, Computer Science, Economics, Physics, Chemistry, Electrical Engineering, Archi-

tecture, Operation Research, Sociology, Psychology, Genetics, and so on. The reason

is that the graphs help as a mathematical models in several systems involving a pair-

wise relation. Moreover, graphs have an intuitive and authentic appeal because of their

ability of diagrammatic representation of the objects and their relationships. In modern

Computer Science, Graph Connectivity has made a tremendous algorithmic develop-

ment under the influence of the theory of complexity and algorithms.

1.1.3 Basic Notions

Graphs are fundamental mathematical structures to represent pairwise relationships be-

tween objects. A graph is defined by G = (V,E), which has the set of vertices V of size

n and the set of pairwise connectivity relation between the vertices called edges E of

size m. If G is directed (resp., undirected) then E contains ordered (resp., unordered)

pair of vertices. Our study focuses on algorithms that evaluate the connectivity structure

of directed graphs.
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Chapter 1. Introduction

Let G = (V,E) be a directed graph (or simply digraph), with m edges and n vertices.

For two distinct vertices u,v ∈ V (G), if there exist an edge e = (u,v) ∈ E(G), then we

say that u is adjacent to v. A path in a graph G is defined by a sequence of vertices

v0,v1, . . . ,vk and k ≥ 1 such that (vi,vi+1) is an edge in G for i = 0, . . . ,k− 1. Two

different paths are called vertex-disjoint (resp., edge-disjoint) if they don’t have any

common vertices (resp., edges). If there exists a path from a vertex u to a vertex v,

then we say that vertex v is reachable from vertex u. Two distinct vertices u and v of

V (G) are said to be strongly connected if they are mutually reachable from each other.

If every two distinct vertices u,v ∈V (G) are strongly connected, then we say that G is

strongly connected.

1.1.4 Connectivity

A strongly connected component of G is a maximal strongly connected subgraph of G

such that all of its vertices are strongly connected to each other. Hence, if G = (V,E)

is not strongly connected, then it contains several strongly connected components. A

vertex (resp., an edge) of G is a strong articulation point (resp., a strong bridge) if its

removal increases the number of strongly connected components of G.

1.1.4.1 2-Edge-Connectivity

In a directed graph G = (V,E), two vertices u and v are 2-edge-connected, if there are

two edge-disjoint directed paths from u to v, and from v to u. Also note that, a path from

u to v and a path from v to u need not to be edge-disjoint. We denote this relation by

u↔2e v. Equivalently, by Menger’s Theorem [121]*, u↔2e v, if and only if the removal

of any edge from G leaves them in the same strongly connected component. We say that

G is 2-edge-connected if ∀u,v ∈ V (G), u↔2e v. Therefore, if G is 2-edge-connected,

then it does not have any strong bridges. The 2-edge-connected components of G are

its maximal 2-edge-connected subgraphs.

*To see the statement of Menger’s Theorem, please refer the Appendix A.2.1.
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1.1. Graph Theory

1.1.4.2 2-Vertex-Connectivity

Let us suppose G = (V,E) be a directed graph, two vertices u and v are 2-vertex-

connected, if there are two internally vertex-disjoint directed paths from u to v and

two internally vertex-disjoint directed paths from v to u. Note that a path from u to v

and a path from v to u need not be vertex-disjoint. As we did for the 2-edge-connected

relation, we denote 2-vertex-connected relation by u↔2v v. Menger’s Theorem [121]

also leads to an equivalent definition of the 2-vertex-connected of a directed graph as

follows: Two vertices u and v in G are u↔2v v only if the removal of any vertex dif-

ferent from u and v leaves them in the same strongly connected component. But unlike

the 2-edge-connected relation, the converse is not always true. It holds only if u and v

are not adjacent to each other. The reason is two mutually adjacent vertices are left in

the same strongly connected component by the removal of any other vertex, but they

are not 2-vertex-connected. We say that G is 2-vertex-connected if it has at least three

vertices and ∀u,v ∈V (G), u↔2v v. Therefore, if G is 2-vertex-connected, then it does

not have any strong articulation points. The 2-vertex-connected components of G are

its maximal 2-vertex-connected subgraphs.

1.1.4.3 2-Edge-Connectivity Vs. 2-Vertex-Connectivity

Edge and vertex connectivity are fundamental concepts in graph theory with numerous

practical applications [20, 125] such as the construction of reliable communication net-

works, in the analysis of the structure of networks, transportation, production, schedul-

ing, power engineering, social networks analysis, etc. Hence, in the context of reliable

communication, 2-vertex- and 2-edge-connected components correspond, respectively,

to parts of a network that are resilient to single vertex and edge failures. These concepts,

however, do not capture the pairwise connectivity among the vertices. Indeed, two ver-

tices may lie in different 2-connected components but still be connected by several

disjoint paths as shown in Figure 1.1. This observation motivates the following natural

2-connectivity relations [71, 72, 91, 142]. We define a 2-vertex-connected block (resp.,

2-edge-connected block) of a digraph G = (V,E) as a maximal subset B ⊆ V such that
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(a) (b) (c) (d) (e)

Figure 1.1: (a) A strongly connected digraph G, with strong articulation points and
strong bridges shown in red (better viewed in color). (b) The 2-vertex-connected com-
ponents of G. (c) The 2-vertex-connected blocks of G. (d) The 2-edge-connected com-
ponents of G. (e) The 2-edge-connected blocks of G. Note that vertices e and f are
in the same 2-vertex-connected (resp., 2-edge-connected) block of G since there are
two internally vertex-disjoint (resp., edge-disjoint) paths from e to f and from f to
e. However, e and f are not in the same 2-vertex-connected (resp., 2-edge-connected)
component of G.

u↔2v v (resp., u↔2e v) for all u,v ∈ B. Unlike the 2-edge-connected blocks and com-

ponents, the 2-vertex-connected blocks and components do not define a partition of V ,

but they can be represented by a tree structure similar to a representation used in [175]

for the biconnected components of an undirected graph.

We remark that in digraphs, 2-vertex (resp., 2-edge) connectivity has a much richer

and more complicated structure than in undirected graphs. Specifically, the vertex-

disjoint (resp., edge-disjoint) paths that make two vertices 2-vertex-connected (resp.,

2-edge-connected) in a block, might use vertices that are outside of that block, while in

a component, those paths must lie completely inside that component. Hence, two ver-

tices that are 2-vertex-connected (resp., 2-edge-connected) are in a common 2-vertex-

connected block (resp., 2-edge-connected block), but not necessarily in a common 2-

vertex-connected component (resp., 2-edge-connected component). See, e.g., vertices

e and f in Figure 1.1. As a result, 2-connectivity problems on digraphs appear to be
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much harder than on undirected graphs. For undirected graphs it has been known for

over 40 years how to compute the 2-edge- and 2-vertex- connected components in linear

time [154]. In the case of digraphs, however, only O(mn) algorithms were known (see

e.g., [91, 92, 112, 127]). It was shown only recently how to compute the 2-edge- and 2-

vertex-connected blocks in linear time [71, 72], and the best current bound for comput-

ing the 2-edge- and the 2-vertex-connected components is O(min{m3/2,n2}) [36, 84].

1.1.5 Flow Graph

A flow graph is a directed graph with a distinguished start vertex s such that every vertex

is reachable from s. Many algorithms for analyzing a flow graph are based on the depth

first search (DFS) technique, which explores the graph as deep as possible. In our case,

we also use the DFS to create a flow graph Gs from a strongly connected directed graph

G = (V,E) by choosing a start vertex s. For example, let us consider a graph shown in

Figure 1.2 (i), its flow graph with respected to DFS is shown in Figure 1.2 (ii).

𝑎

𝑑 𝑒

𝑓

𝑠

𝑏 𝑐

𝑖 𝐺

𝑎

𝑑 𝑒

𝑓

𝑠

𝑏 𝑐

𝑖𝑖 𝐺𝑠

Figure 1.2: (i) Graph G (ii) flow graph Gs of G with respect to depth first search that
start from a vertex s, solid edges in blue color represent the DFS edges. (Better viewed
in color).
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1.1.6 Dominator Tree

In a tree graph, if there exist a path from a vertex u to a vertex v, then we say that u is

the ancestor of v and v is the descendant of u. The vertex u is a dominator of a vertex

v (u dominates v) if every path from s to v in Gs contains u as illustrated in Figure 1.3

(i). The dominator relation in Gs is transitive. That is, if vertex x dominates vertex y

and y dominates vertex z, then x also dominates z. Thus, we can represent a dominator

relation by tree graph rooted at s, called dominator tree D such that v dominates w if

and only if v is an ancestor of w in D. For example, let us consider a graph shown in

Figure 1.3 (ii), then its dominator tree is represented by a tree shown in 1.3 (iii). We say

that a vertex u (6= s) is a non trivial dominator in D if u dominates at least one vertex v

(6= u).

Gs
𝑎

𝑑 𝑒

𝑓

𝑠

𝑏 𝑐

(𝑖𝑖)

𝑏

𝑐

D

𝑎

𝑑

𝑒

𝑠

𝑓

(𝑖𝑖𝑖)

𝑠

𝑢

𝑣

(𝑖)

Figure 1.3: (i) Highlevel overview of a dominator relation, (ii) flow graph Gs of a graph
G with respect to depth first search that start from a vertex s, solid edges represent the
DFS edges, (iii) Dominator tree D of a flow graph Gs. (Better viewed in color).

1.1.7 Loop Nesting Tree

As we already said, in a SCC of a graph G all vertices are strongly connected to each

other (i.e., they are mutually reachable from each other). There are several cycles of

vertices that can be constructed in a SCC. Moreover, in a strongly connected graph, two
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different cycles defined by DFS are either disjoint or one contains the other. Therefore,

if we consider a cycle as a loop, then we can represent this relationship between loops

in a tree, called loop nesting tree, defined as follows. A loop nesting tree represents a

hierarchy of strongly connected subgraphs (since a cycle is a strongly connected sub-

graph) of Gs [161], and is defined with respect to a DFS tree T of Gs as follows. For

any vertex u, the loop of u, denoted by loop(u), is the set of all descendants x of u in T

such that there is a path from x to u in G containing only descendants of u in T . The

vertex u is the head of loop(u). Any two vertices in loop(u) reach each other. There-

fore, loop(u) induces a strongly connected subgraph of Gs; it is the unique maximal set

of descendants of u in T that does so. An example is shown in Figure 1.4.

𝑎

𝑠

𝑔𝑓
𝑒

𝑑
𝑐

𝑏

𝐺𝑠

ℎ

𝑎

𝑠

𝑔𝑓

𝑒𝑑𝑐

𝑏

𝐻

ℎ

(𝑖) (𝑖𝑖)

Figure 1.4: (i) flow graph Gs of a graph G with respect to depth first search
that start from a vertex s, solid black edges represent the DFS edges, loops
{e,h},{d,g},{c, f},{b,d,g,e,h},{a,c, f},{s,a,c, f ,b,d,g,e,h} are represented by
different color, (ii) loop nesting tree H of Gs (Better viewed in color).

1.1.8 Most Critical Nodes

1.1.8.1 Introduction

We already noticed that if we remove any strong articulation point from a graph, then the

graph will be decomposed into several strongly connected components. Let G = (V,E)
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be a directed graph, and let C1,C2, . . . ,C` be its strongly connected components. The

size |Ci| of a strongly connected component Ci is defined as its number of vertices. We

define the connectivity value of G as

f (G) =
`

∑
i=1

(
|Ci|
2

)
.

𝒇 𝑮𝟏 =
𝟗

𝟐
= 𝟑𝟔

4

2
= 6

3

2
= 3

2

2
= 1

𝒇 𝑮𝟑 = 𝟔 + 𝟑 + 𝟏 = 𝟏𝟎

5

2
= 10

4

2
= 6

𝒇 𝑮𝟐 = 𝟏𝟎 + 𝟔 = 𝟏𝟔

Figure 1.5: Connectivity value of graphs G1,G2 and G3. Even though all of them have
the equal number of vertices, their connectivity value are different according to the size
and number of SCCs they have.

Note that f (G) equals the number of vertex pairs in G that are strongly connected

(i.e., pairwise strong connectivity value). As we can see in Figure 1.5, where all the

graphs G1,G2 and G3 have the equal number of vertices but their connectivity value

depends on the number of strongly connected vertex pairs. Among the strong articula-

tion points, we observed that there are some distinct vertices whose removal causes the

graph to have the minimum pairwise strong connectivity value. These types of partic-

ular nodes play the key role in a graph connectivity. We called them highly influential

nodes or most critical nodes in a graph.

For example, as shown in Figure 1.6, if we remove any non-strong articulation point

like d from G, then it will not affect the number of strongly connected components of

G (Figure 1.6 (vi)). Therefore, if we remove such non-strong articulation point from a

strongly connected graph G = (V,E), and |V |= n, then the connectivity value of a graph

f (G) will be decreased to
(

n−1
2

)
from

(
n
2

)
, which is not a significant decrement. But

if we remove any strong articulation points like {a,b,c,e, f} from G, then the number

12



1.1. Graph Theory

of strongly connected components of G will be increased. Furthermore, it can be seen,

if we remove either a or b or c, then the G will have only 2 different strongly connected

components. But if we remove the vertex f from G, then G will have the maximum

number of strongly connected components, i.e. 5 as shown in Figure 1.6 (iv). Therefore,

even though the graph has many strong articulation points, the vertex f is the most

critical nodes for the graph presented on Figure 1.6-(i). In different applications of

network analysis, we wish to identify the nodes of a network that are ‘important’ for a

specific task, where the definition of “importance” varies according to the application at

hand. For example, one may wish to identify the locations in a network that are useful

in order to inhibit the diffusion of contagious [18, 105]. Similarly, critical nodes also

help to assess network vulnerabilities [146], or nodes that represent highly influential

individuals in a social network [96], etc. Our study considers the problem of detecting a

set S⊆V of critical nodes such that a directed graph G\S has minimum pairwise strong

connectivity. This problem is NP-hard [16, 46], and thus we are interested in practical

heuristics.

1.1.8.2 Applications

The critical node detection problem (CNDP) has many applications as already observed

in [16]. For instance, it is important in social network analysis, where it can yield a

better understanding of several properties, such as centrality, importance and cohesion

of specific nodes [21]. It was also applied to the study of covert (or terrorist) net-

works [103], network immunization [37].

Similarly, CNDP is an essential tool to estimate the vulnerability of supply chain net-

works. It also has a use for jamming and suppressing on a network. For the jamming,

it helps to select those nodes such that whose removal creates the maximum network

disruption, and for the suppress, it has a use to determine the nodes that we have to

protect from enemy disruptions. Moreover, it helps to neutralize the terrorist activity in

the today’s digital world. When we collect the data from the social network or by some

other intelligence source, it helps to determine the active individuals whose “neutral-
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Figure 1.6: A strongly connected digraph G (i), The strongly connected components of
G\ v, for v ∈ {a,b, f ,c,d}, are shown in figures (ii),(iii),(iv),(v)and(vi) respectively.

ization” will maximally disrupt the communication. This leads us to break down the

communication in covert networks. There are some particular social groups of popula-

tions, who have the high rates of transmissibility of viruses for which mass vaccination

is very expensive. In that case, it would help to determine the appropriate set of indi-

viduals to vaccinate so that the spread of the disease or virus could be minimized. In

addition, CNDP also has a large number of applications in drug designs. Examining

the protein-protein interaction maps, one can determine which proteins cells need to be

targeted to destroy the network. That will be the key reference to identify the aggressive

cancer cells that have to be removed to slow down the growth rate of cancer. Further-

more, it will help to determine critical roadways to fortify or to repair first, enable mass

evacuation of first responders,in the event of a natural disaster, for example, hurricane,

14



1.2. Authentication Systems

earthquake or flood.

1.2 Authentication Systems

Another problem that we covered in this thesis is the Authentication System for a se-

curity model. Authentication [129] is an essential tool of a security model. It is the

process that allows the users (or, in some cases, the machines [3]) to get access to the

system by confirming their identity.

1.2.1 Categories

Authentication mechanisms are divided into four different categories given below, and

each category can follow the different type of methods for the authentication. (See also

[166].)

i. Single Factor: Single Factor Authentication System is the weakest level of Au-

thentication type, where only a single component is used to verify an individual’s

identity. Therefore, this type of authentication model is not recommended for

most of systems, for example, bank or other financial institution, health or per-

sonally relevant organizations that need a higher level of security.

ii. Two-Factor: In Two-Factor Authentication System, two different elements are

used to verify the user identities, for example, bankcard and a Personal Identifica-

tion Number (PIN). Moreover, when a user needs to access a very-high-security

system physically, then it might also check the height, weight, and biometric se-

curity as the face, or the retina scan, or the fingerprint, etc.

iii. Multi-Factor: Multi-Factor Authentication System is a better option to enhance

the security level than the two-factor authentication level.

iv. Strong-Factor: Strong-Factor Authentication System is very similar to Multi-

Factor Authentication System or Two-Factor Authentication System, but exceed-

ing those by other rigorous requirements [166]. According to its definition, its
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implementation varies and depends on of institution. For example, the U.S. Gov-

ernment’s National Information Assurance Glossary [79] defines strong authenti-

cation as a layered authentication approach relying on two or more authenticators

to establish the identity of an originator or receiver of information. Whereas, the

European Central Bank has defined strong authentication in [51] “a procedure

based on two or more authentication factors.” The using factors must be mutually

independent of each other, and at least one factors must be “non-reusable and

non-replicable,” (except in the case of an inherence factor) and also incapable of

being stolen on Internet.

1.2.2 Types

Several methods have been used for the authentication techniques, for example, Re-

mote, IPsec, Network, Logon, etc. [48, 147]. We focus our research on Logon Meth-

IPSec Password, etcBiometricSmartcard

Fingerprint
Facial or 

Retina scan
Online Handwritten 

Signature

Voice Pattern 
Sample, etc

Authentication Methods

Remote Logon Network, etc.

Figure 1.7: High-level ideas of the authentication methods with its hierarchies for a
security model.
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ods. The Logon Method uses different ways to verify the user identity, for example,

password, smart card, biometric recognition, etc. The biometric recognition includes

the fingerprint, facial or retinal scan, voice pattern sample, or online handwritten sig-

nature. Our study is centered on the online handwritten signature verification for the

authentication system illustrated in Figure-1.7. There are tremendous applications of

authentication systems, due to the emerging needs of privacy and security in today’s

digital society (see also the [117]). Many people engage in the digital world without

being concerned about the privacy and security of their data because they are using

the devices, which has limited hardware configuration and unable to run the security

algorithms. Therefore, we concentrate on designing a new authentication system for a

security model that is suitable for low-end devices (i.e., devices with limited hardware

configuration).

Register
Modify
Verify

Data Server

(𝑖)

Data Server

Register
Modify
Verify

(𝑖𝑖)

Figure 1.8: Overview of a Handwritten Signature Verification Process.

17



Chapter 1. Introduction

1.2.3 Online Handwritten Signature Verification

In general, online handwritten signature verification works as follows: a client device

takes the data of handwritten signature of a user and then send it to the server for ver-

ification. The server processes the input stream and decides whether the input stream

corresponds to a genuine signature, thus granting the authorization to the user as shown

in Figure 1.8 (i). In our security model, the client itself checks the user identity through

an application that does not require to send the data to server for verification as shown

in Figure 1.8 (ii). Moreover, if the user modifies the signature, then the changes will be

notified to the server.

1.3 Contributions

This thesis examines the efficiency of recent algorithms and presents novel and more ef-

ficient algorithms in the field of Graph Connectivity and Authentication systems. They

will be detailed in the following subsections.

1.3.1 Graph Connectivity

In the field of Graph Connectivity, we modified the existing algorithms that compute the

loop nesting forest, 2-edge-connected (resp., 2-vertex-connected) components (resp.,

blocks) of a directed graph and boost their performances both concerning the memory

and the running time. We also have done some experimental observations between the

newly available algorithms of 2-connectivity of the digraphs, compared their perfor-

mances reporting our results.

We revisited the problem of computing the 2-edge and the 2-vertex-connected blocks

and components of a directed graph G in practice by taking into account the recent theo-

retical advances in these areas. In particular, we explore the design space of algorithms

that perform well in practice by implementing and engineering new existing algorithms.

We do this by comparing new implementations against the fastest existing implemen-

tations in [44] with a thorough empirical analysis that highlights the merits and weak-
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nesses of each technique. Specifically, we present an efficient implementation of new

linear-time algorithm for computing the 2-edge-connected and the 2-vertex-connected

blocks of G. That are based on loop nesting information [73]. We then compared these

algorithms against the algorithms based on a two-level decomposition of G using aux-

iliary graphs [71, 72] implemented in [44]. To the best of our knowledge, these are the

best existing ones.

We consider the computation of the 2-vertex-connected components of G and in-

vestigate how recent O(n2)-time algorithms by Henzinger et al. [84], and some of its

variants that apply the hierarchical graph sparsification technique of [84], perform in

practice. For the computation of blocks, our experiments indicate that the loop-nesting-

based algorithms are not only substantially faster in practice but also much more effi-

cient in terms of memory usage, especially for sparse graphs. That makes them suitable

for the analysis of large-scale real-world graphs, which are known to be inherently

sparse. Furthermore, the loop-nesting-based algorithms are conceptually simpler to

implement. Our experiments also highlight that the performance of the loop nesting

computation degrades substantially as the graph density increases, and propose vari-

ants that alleviate this problem. We believe that these variants may be of indepen-

dent interest since the loop nesting information is useful in a variety of applications

[140, 161]. For the computation of 2-vertex-connected components, our experimental

results suggest as following. Even though the algorithms based on hierarchical sparsi-

fication presented in [84] are asymptotical superior, they are competitive with simpler

O(mn)-time algorithms based on dominator tree decomposition presented in [44] only

in dense worst-case instances. On the other hand, in general, for the real world graph,

simpler O(mn)-time algorithms, based on dominator tree decomposition performed bet-

ter than the hierarchical sparsification algorithms.

1.3.2 Most Critical Nodes

We design a new algorithm to compute highly influential vertex (also called most crit-

ical node) of a directed graph in linear time and such that after the removal of a most
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critical node, the graph will decompose into minimum pairwise strong connectivity.

After removing a most critical node, a strongly connected component of a graph will

be decomposed into several strongly connected components. Let us consider a directed

graph G = (V,E). We want to find a set S ⊆ V of most critical nodes such that the

residual graph G \ S has minimum pairwise strong connectivity. This problem is NP-

Hard [16, 46]. A graph can have several strongly connected components. In terms of

most critical node, all SCCs are independent of each other. Hence, a critical node de-

tection problem follows the independent set reduction process. Thus, we are interested

in practical heuristics. We compared our algorithm with other available heuristics by

performing experimental observations. This is a far-reaching step, especially as it was

the first real progress on this important natural problem since the foundational work

done 15 years ago for undirected graphs.

We present a sophisticated linear-time algorithm to find a most critical node of di-

rected graphs. That is, given a directed graph G = (V,E) with n vertices and m edges,

we identify the most critical node of G in O(m+ n) time. As highlighted by several

recent results, connectivity-related problems for digraphs are notoriously harder than

those for undirected graphs, and indeed many notions for undirected connectivity do

not translate to the directed case; see, e.g., [71, 83]. Our algorithm is based on the

recent framework of [73] for answering strong connectivity queries in a directed graph

under an edge or a vertex failure. A natural extension of this algorithm is to repeat-

edly remove the most critical node of the current graph G, until we have removed k

vertices. Within this process, we obtain an efficient heuristic for the general case that

runs in O(k(m+n)) time. We assess the performance of our algorithms experimentally.

We show that the linear-time algorithm performs very well in practice, while the näive

approach of computing f (G\ v) for all vertices v is not competitive even for graphs of

small size. Furthermore, our heuristic is shown to achieve a much better fragmentation

of the input graph compared to selecting nodes by other popular heuristics, such as Page

Rank [27], Betweenness Centrality [24], and Maximum Degree.
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1.3.3 Handwritten Signature Verification

We designed and developed a new authentication system based on handwritten signature

verification method that runs on low-end devices.

Our authentication system is based on the following aspects. Firstly, we defined

a method for the verification of signature dynamics which is compatible with wide

range of low-end mobile devices, in terms of computational overhead and verification

accuracy that doesn’t require the special hardware; secondly our new method makes use

of several technical features that, to the best of our knowledge, have not been previously

used for handwritten signature recognition; finally, in order to assess the verification

accuracy of our handwritten signature verification (HSV) system, along with the average

computational time, we conduct an experimental study whose results are reported for

different data sets of signatures.

1.4 Outline

Chapter 2 contains a brief description of the necessary tools, techniques, and notions

on graphs. It also discusses the related previous work, which has already been done by

other researchers.

In Chapter 3, we explain the fundamental algorithms and relevant notation that we

use throughout our analysis of the graph algorithms. We describe tree graphs, flow

graphs, and how to create a flow graph from a given directed graph. After that, we

explain the notion of dominators tree; we describe available algorithms to compute the

dominator trees of a digraph and its applications. Finally, we provide the reasons why

and which algorithm we choose to compute the dominator tree in our analysis. We also

discuss the algorithms to compute the strongly connected components of a digraph.

That is mainly the algorithms by Tarjan [154] and by Gabow [60]. Similarly, we pro-

vide the definition of a loop nesting forest that is defined in [156]. Next, we outline the

application, and we explain the available algorithms to compute the loop nesting forest.

In addition, we also present a new memory efficient algorithm to compute the loop nest-

21



Chapter 1. Introduction

ing forest of a directed graph. This is derived from the single pass Tarjan’s Streamline

version [30]. Then we present the result of empirical studies on those algorithms.

Chapter 4 involves an experimental study of various algorithms that are used to

compute the 2-edge-connected blocks of a digraph within a linear time bound, available

in [71] and in [73] respectively. We discussed their nature and the ideas to process the

graphs during the computation. We also explain how to achieve efficient implementa-

tions of such standard algorithms. Furthermore, we introduce a new memory efficient

version of the algorithm that is inherited from the algorithm presented in [73]. After

that, we present a thorough empirical analysis report of these algorithms by using both

the real world graphs which are taken from different application domains and synthetic

benchmark graphs. All the results of this chapter are ready to be published.

Next, in Chapter 5, we consider the problem to compute the 2-vertex-connected

blocks of a digraph. There are only two algorithms available with the linear time bound

to compute the 2-vertex-connected blocks of a digraph. That are presented in [72] and

in [73]. We compare the main ideas behind those algorithms and explain why the 2-

vertex-connected block computation is more complex than the 2-edge-connected blocks

computation. In addition, we present a linear time memory efficient algorithm that is

derived from [73]. After that, we perform an experimental evaluation of the algorithm

presented in [72] and in [73] along with our memory efficient version. Finally, we report

the results of our experiments. A paper with all the results of this Chapter along with

Chapter 4 is ready for publication.

Chapter 6 analyzes recent algorithms that are used to compute the 2-vertex-connected

component of a directed graph. More precisely, our analysis compares the algorithms

available in [44] which has O(mn) time complexity to the quadratic time O(n2) algo-

rithm presented in [83]. We partly merge these algorithms and design a new hybrid

algorithm, which also runs in quadratic time O(n2). We implement all of these algo-

rithms by using uniform data structures. Our analysis reports thorough the experimental

observation shows that the O(mn) time algorithm performs better than other quadratic

time algorithms for the real world and normal artificial random graphs. All the results
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of this Chapter along with the Chapters 4 and 5 are ready for the publication.

In Chapter 7, we explain our novel sophisticated linear time algorithm to compute

most critical node of a directed graph for the k = 1, where k is the number of most

critical nodes that are supposed to be removed. We also propose two heuristics named

as “a maximum number of children in loop nesting tree" and “a maximum number of

children in dominator tree" to find the most critical node of a digraph. Then, we con-

duct a thorough experimental evaluation of various other heuristics such as Maximum

Degree, Page Rank, Betweenness Centrality for critical node detection problem. The

preliminary version of the algorithm, heuristics that are proposed in this Chapter and

the experimental reports were presented at the “17th International Conference on Al-

gorithm Engineering and Experiments [132]". A journal publication containing all the

results is in preparation.

Next in Chapter 8, we present a new authentication system based on online hand-

written signature verification (HSV). We implement the proposed algorithm and perform

the experiments of the signatures from various languages on Android version≥ 4.0. We

choose three different testing datasets: on the SigComp2011 Dutch and Chinese datasets

[110]; on the SigComp2013 Japanese dataset [113]. The experimental observation pro-

duces 95% of correct results for the Chinese, Japanese, and Dutch signatures executed

under one second. A preliminary version of this Chapter was presented at the 2nd Inter-

national Conference on Information Systems Security and Privacy [131]. Moreover, the

presented algorithm is published as a book Chapter in “Communications in Computer

and Information Science Series” by Springer Publications [133].

Chapter 9 concludes the thesis. It gives a summary of the achieved results for the

graph connectivity, critical nodes and security system by pointing out the novelties in-

troduced by the algorithms, their performance, and the produced result. It also provides

the open issues that remain to be covered, representing the future works we intend to

pursue and some open problems.

The Appendix section contains a brief description of Ackermann’s function, tree

traversal methods, pointer machine model, random access model, statement of Menger’s
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theorem and a short note of asymptotic notations of algorithms.

Finally, we provide the reference of resources that we used in our work in the bibli-

ography section.
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2
Preliminaries and State of the Art

2.1 Introduction

A graph G consists of a non-empty set V (G) of elements called vertices and a set E(G)

which contains the pairwise connectivity relation between the vertices called edges. We

call V (G) (or simply V ) the vertex set and E(G) (or simply E) the edge set of G. We will

often write G = (V,E) which means that V and E are the vertex set and edge set of G,

respectively. There are two different types of graphs, directed graph (or just digraph)

and undirected graph. Throughout the whole thesis, we will use the term directed graph

and digraph interchangeably. We say that G is a directed (resp., undirected) graph if

E contains the order (resp., unordered) pair of vertices. Moreover, if e = (u,v) is an

edge of a digraph G = (V,E), then the first vertex u is its tail and the second vertex v

is its head. We also say that the e leaves (or outgoes) from u and enters (or incomes or

incidents ) to v. In both (i.e., both the directed and the undirected) type of the graph, we

call u and v the end-vertices; we say that the end-vertices are adjacent i.e., u is adjacent

to* v and v is adjacent to u. Furthermore, we say that e is associated to the end-vertices.

The above definition allows a digraph G to have edges with the same end-vertices.

For example, e1 = (u,v) and e2 = (u,v). Here, e1 and e2 are called the parallel (or

multiple) edges, that is pairs of edges with the same tail and the same head. If G has

parallel edges, then it is called a directed multigraphs. Moreover, if an edge e = (u,u)

(i.e., edge whose head and tail are coincide), then e is a loop. If G has parallel edges and

loops, then we called G is a directed pseudographs. A simple digraph G does not have

any parallel edges and loops. In our work, the definitions and algorithm can be extended

*Some authors use the convention that u is adjacent to v to mean that there is an edge from u to v,
rather than just that there is an edge (u,v) or (v,u) in G. We also do the same in our thesis.
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to multigraphs or pseudographs, but for simplicity, our input digraphs are simple.

The reverse graph GR results from the graph G after reversing all edge directions.

GR is identitical to G for undirected graph.

2.1.1 Size, Degree, Sparse Graph and Complete Graph

The size |V |, of a graph G = (V,E), is given by the number of its vertices. Therefore,

it can be either finite or infinite. Unless otherwise specified, we assume, throughout the

whole thesis that our graphs are finite (therefore, |V |= n, n ∈ N and |E|= m, m ∈ N).

The degree (or valency) of a vertex is dentoed by dG(v) and is defined as the number

of edges associated to it (i.e., dG(v) = |{e ∈ E:e = (u,v) or e = (v,u) for u ∈V}| ). For

undirected graph, it is equal to the number of edges incident to it. For directed graph,

the degree dG(v) of a vertex v equals the sum of the number of edges that outgoes (or

leaves) from v (i.e., edges that have v on their tail) called out degree OutdegG(v) of v

plus the number of edges that incidents (or enters) to v (i.e., edges that have the v on their

head ) called in degree IndegG(v) of v. If a vertex v has degree 0 (i.e., there is no edges

associated with v), then v is called a isolated vertex. The minimum degree and maximum

degree of G are given by the numbers δ(G) := min {dG(v)|v ∈ V} and ∆(G) := max

{dG(v)|v ∈V} respectively. If all of the vertices of a graph G have the equal degree k,

then G is called a k-regular graph, or simply regular graph. For example, a cubic graph

is a 3-regular graph. The average degree of G is given by the number

dG(G) :=
1
|V | ∑v∈V

dG(v)

The average degree globally measures the number of edges of G per vertex. We can

see that δ(G) ≤ dG(G) ≤ ∆(G). The graph density is defined by the ratio of edges to

vertices i.e., ε(G) :=
|E|
|V |

. Sometimes, the graph density is useful in the analysis of an

algorithm.
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Handshaking Lemma. † In a graph, the sum of degrees of vertices is equal to twice

the number of edges. The quantities dG and ε are intimately related as following:

|E|= 1
2 ∑

v∈V
dG(v) =

1
2

dG(G).|V |=⇒ ε(G) =
1
2

dG(G).

A sparse graph or a minimally connected graph is a graph such that m = Θ(n)‡,

i.e., it has the minimum number of edges to connect all vertices.

For two distinct vertices u and v of G, if there exist edges e1 =(u,v) and e2 =(v,u) in

E(G), then we say that G is the edge-maximal graph. Therefore, if G is edge-maximal,

then G has a property such that for all vertices u∈V (G), no graph G+(u,v) or G+(v,u)

does for v ∈ {V (G)−{u}}. If G is edge-maximal, then G is called a complete graph

and m = Θ(n2).

2.1.2 Subgraph and Induce Subgraph

We can perform the set operations between two graphs illustrated in Figure 2.1.

1

2 3

4

𝐺1

3

4

56

𝐺2

1 4

56

2 3

𝐺1 ∪ 𝐺2

3 4

𝐺1 ∩ 𝐺2

1 2

𝐺1 ∖ 𝐺2

Figure 2.1: Example of set operations between the graphs G1 and G2

†The Handshaking Lemma has its origins in Leonhard Euler’s famous 1736 analysis of the “Bridges
of Königsberg” problem.

‡ To see the details of the asymptotic notation, please refer the Appendix A.1.
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Let G = (V,E) and G′ = (V ′,E ′) be two graphs. If there exists a bijective function

φ : V →V ′ such that for all u,v ∈V , (u,v) ∈ E ⇐⇒ (φ(u),φ(v)) ∈ E ′. We then called

map φ is an isomorphism and we say that G is isomorphic to G′. Furthermore, if

G = G′ then φ is called an automorphism. We defined the set G∪G′ := (V ∪V ′,E ∪E ′)

and G∩G′ := (V ∩V ′,E ∩E ′). We say that G and G′ are disjoint if G∩G′ := /0. If

V ′ ⊆ V and E ′ ⊆ E then we say that G′ is a subgraph of G (and G is supergraph of

G′). In this case, we use the notion of G′⊆ G (i.e., G contains G′). Similarly, if G′⊆ G

and G′ 6= G, then we say that G′ is a proper subgraph of G. Furthermore, if G′⊆G and

G′ is isomorphic to G (i.e., G′ contains all the edges (u,v) ∈ E with u,v ∈V ′), then we

say that G′ is an induced subgraph of G; we also say that V ′ induces or spans G′ in G.

Figure 2.2 illustrates the example of subgraph and induced subgraph.

1 2

34

5

6

𝐺1 G2

1 2

34

1 2

34

𝐺3

Figure 2.2: Example of subgraph and induce graph, graph G1 with its subgraph G2 and
G3, where G2 is an induce subgraph, but G3 is only subgraph.

2.1.3 Path and Cycle

A path in a graph G = (V,E) is defined by a sequence of vertices v0,v1, . . . ,vk and k≥ 0

such that (vi,vi+1) is an edge in G for i = 0, . . . ,k−1. The path length k is defined as its
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number of edges. In a graph G = (V,E), if there exists a path from a vertex v to a vertex

w, then we say that vertex w is reachable from vertex v. Two different paths are called

edge-disjoint if they don’t have any common edge. Similarly, we say that two different

paths are vertex-disjoint if they don’t have any vertex in common.

A cycle in G is a path such that its first and last vertices are same (v0 = vk). If two

different cycles are cyclic permutations of each other, then it can be considered as a

single cycle. A directed acyclic graph (or DAG) is a digraph that has no cycles.

2.1.4 Graph Contraction.

Let S be a set of vertices in G, and v be a vertex of G but v /∈ S. A contraction of S

into v means forming a new graph by replacing each edge (x,w) with x 6= v and w ∈ S

by (x,v). Each arc (w,y) with y 6= v and w ∈ S by (v,y) and then deletes all vertices

in S and the remaining arcs leaving a vertex in S. Figure 2.3 illustrates the concept of

contraction.

𝑤

𝐺

𝑆

𝑥

𝑦

𝑣

Figure 2.3: Contraction of a set S ⊆ V (G) to a vertex v ∈ {V (G) \ S} in digraph G =
(V,E).
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2.2 Graph Connectivity

2.2.1 Definition.

Let G = (V,E) be a directed (resp., undirectd) graph. Two distinct vertices v and w of

V (G) are said to be strongly connected (resp., connected) if there exists a path from v

to w and a path from w to v (i.e., v and w are mutually reachable from each other). If

every two distinct vertices v and w in G are strongly connected (resp., connected), then

G is called a strongly connected (resp., connected) graph. Throughout the whole thesis,

we assume that our graphs are strongly connected directed graph unless defined.

2.2.2 Strongly Connected Component

Let us consider a digraph G = (V,E). According to the above definition, two distinct

vertices v and w in G are strongly connected if they are mutually reachable from each

other. Moreover, for every two distinct vertices v and w of G, if v and w are strongly

connected, then G is strongly connected. Sometimes, all the vertices of G might not

be strongly connected each other (i.e., G is not strongly connected). Therefore, the

conecept of strongly connected component (SCC) is arised. A strongly connected com-

ponent of G is a maximal strongly connected subgraph of G such that all of its vertices

are strongly connected to each other. Hence, G is either strongly connected or has sev-

eral strongly connected components. For example, the graphs shown in 2.4 (a) is a

strongly connected digraph and Figure 2.4 (b) shows three different strongly connected

components.

2.2.3 Reverse Digraph

Let G = (V,E) be a digraph, then the reverse digraph of G results from G by inverting

the direction of all the edges, denoted by GR = (V,ER). For example, Figure 2.5 illus-

trates the example of digraph and its corresponding reverse digraph. The connectivity

property of GR is identitical to that of G. This is proved by following Lemma 2.2.1.

30



2.2. Graph Connectivity

(𝑎) (𝑏)

Figure 2.4: Example of a strongly connected graph (a), and a graph with several
strongly connected components (b).

Lemma 2.2.1. If a digraph G = (V,E) is strongly connected then its reverse digraph

GR = (V,ER) is also strongly connected.

Proof. Let G = (V,E) be a strongly connected digraph. Choose two distinct vertices

u,v∈V (G). Since G is strongly connected, u and v are also stongly connected, i.e, there

exists a path P1 from u to v and another path P2 from v to u. When G will be converted

into GR by reversing all edges directions, then all paths will also be reversed. Thus, in

GR, P1 connects v to u and P2 connects u to v. This implies that u and v are also strongly

connected in GR.

2.2.4 Flow Graphs, Dominators and Loop Nesting Tree

A flow graph is a digraph with a distinguished start vertex s such that every vertex is

reachable from s. We let Gs be the flow graph of G = (V,E) with start vertex s ∈ V .

Several different techniques are available to explore a flow graph. Typically, we explore

a flow graph by executing a depth-first-search (DFS), which chooses any vertex s ∈

V (G) of a graph G = (V,E) and then scan the graph as deep as possible. For example,

let us consider a graph shown in Figure 2.6 (i), its flow graph with respected to DFS is
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G

𝑎 𝑏

𝑐 𝑑

𝑒 𝑓

𝑔 ℎ

𝐺𝑅

𝑎 𝑏

𝑐 𝑑

𝑒 𝑓

𝑔 ℎ

Figure 2.5: Example of graph G and its reverse graph GR that results from G by inverting
the direction of all edges.

shown in Figure 2.6 (ii).

𝑎

𝑑 𝑒

𝑓

𝑠

𝑏 𝑐

𝑖 𝐺

𝑎

𝑑 𝑒

𝑓

𝑠

𝑏 𝑐

𝑖𝑖 𝐺𝑠

Figure 2.6: (i) Graph G (ii) flow graph Gs of G with respect to depth first search that
start from a vertex s, solid edges in blue color represent the DFS edges. (Better viewed
in color).

In a tree graph, if there exist a path from a vertex u to a vertex v, then we say that u

is the ancestor of v and v is the descendant of u. A vertex v is a dominator of a vertex

w (v dominates w) in Gs, if every path from s to w contains v as illustrated in Figure

2.7 (i). The dominator relation in Gs is transitive. That is, if u ∈ V dominates v ∈ V

and v dominates w ∈ V , then u also dominates w. Thus, a dominator relation can be
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represented by a tree graph rooted at s, called dominator tree D such that v dominates

w if and only if v is an ancestor of w in D. For example, let us consider a flow graph

shown in Figure 2.7 (ii), then Figure 2.7 (iii) represents the dominator tree of a flow

graph shown in Figure 2.7 (ii). We say that a vertex v (6= s) is a non trivial dominator

in D if v dominates at least one vertex w (6= v).

Gs
𝑎

𝑑 𝑒

𝑓

𝑠

𝑏 𝑐

(𝑖𝑖)

𝑏

𝑐

D

𝑎

𝑑

𝑒

𝑠

𝑓

(𝑖𝑖𝑖)

𝑠

𝑢

𝑣

(𝑖)

Figure 2.7: (i) Highlevel overview of a dominator relation, (ii) flow graph Gs of a graph
G with respect to depth first search that start from a vertex s, solid edges represent the
DFS edges, (iii) Dominator tree D of a flow graph Gs. (Better viewed in color).

As we already said all vertices are mutually reachable from each other in a SCC.

Several different cycles of vertices can be constructed in a SCC and in a strongly con-

nected graph, two different cycles defined by DFS are either disjoint or one contain

other. Therefore, if we consider a cycle as a loop, then we can represent this relation-

ship of loops by a tree called loop nesting tree, which represents a hierarchy of strongly

connected subgraphs (since a cycle is a strongly connected subgraph) of flow graph Gs

[161], and is defined with respect to a depth-first-search (DFS) tree T of Gs as follows.

For any vertex u, the loop of u, denoted by loop(u), is the set of all descendants x of

u in T such that there is a path from x to u in G containing only descendants of u in

T . The vertex u is the head of loop(u). For example, Figure 2.8 (ii) represents a loop

nesting tree of a flow graph shown in Figure 2.8 (i). Any two vertices in loop(u) reach
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each other. Therefore, loop(u) induces a strongly connected subgraph of Gs; it is the

unique maximal set of descendants of u in T that does so. Hence, two differents loops

are either disjoint or one contains another.

𝑎

𝑠

𝑔𝑓
𝑒

𝑑
𝑐

𝑏

𝐺𝑠

ℎ

𝑎

𝑠

𝑔𝑓

𝑒𝑑𝑐

𝑏

𝐻

ℎ

(𝑖) (𝑖𝑖)

Figure 2.8: (i) flow graph Gs of a graph G with respect to depth first search
that start from a vertex s, solid black edges represent the DFS edges, loops
{e,h},{d,g},{c, f},{b,d,g,e,h},{a,c, f},{s,a,c, f ,b,d,g,e,h} are represented by
different color, (ii) loop nesting tree H of Gs (Better viewed in color).

Next Chapter gives a brief description of a tree graph and flow graph, explains the

available algorithms to compute the dominators and the loop nesting forest of a flow

graph.

2.2.5 Edge Connectivity

Strong Bridge. Let G = (V,E) be a directed graph. An edge e ∈ E(G) is a strong

bridge (SB) in G, if its removal increases the number of SCCs of G, as shown in Figure

2.9-(a), where an edge (g, f ) (red color) is a strong bridge. A digraph of size |V (G)|=

n can have at most 2n− 2 strong bridges [88]. The SBs of a directed graph can be

computed in a linear time [88]. The next Chapter explains the available algorithms to

compute the strong bridges, and their relation to the dominator tree.
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2-Edge-Connected. Let G = (V,E) be a directed graph. Two vertices v,w∈V (G) are

called 2-edge-connected, if there are two distinct edge-disjoint paths from v to w and

two distinct edge-disjoint paths from w to v. Also note that, a path from v to w and a

path from w to v need not be edge-disjoint. We denote the 2-edge-connected relation by

v↔2e w. If ∀u,v ∈V (G), u↔2e v, then G is said to be 2-edge-connected. Furthermore,

if G is 2-edge-connected then it does not have any strong bridges. Menger’s Theorem

[121]§ also leads to an equivalent definition of the 2-edge-connected of a graph as fol-

lows: Two vertices v and w in G are 2-edge-connected, if and only if the removal of

any edge from G leaves them in the same strongly connected component. Following

the Menger’s Theorem, it is easy to see that v↔2e w if and only if the removal of any

edge leaves v and w in the same strongly connected component.

𝑎 𝑏

𝑓
𝑒

𝑔

𝑖 𝑗

ℎ

𝑑𝑐

𝑎 𝑏

𝑓
𝑒

𝑔

𝑖 𝑗

ℎ

𝑑𝑐

𝑎 𝑏

𝑓
𝑒

𝑔

𝑖 𝑗

ℎ

𝑑𝑐

𝑎 𝑏

𝑓
𝑒

𝑔

𝑖 𝑗

ℎ

𝑑𝑐

𝑎 𝑏

𝑓
𝑒

𝑔

𝑖 𝑗

ℎ

𝑑𝑐

(a) G (b) 2VCC(G) (c) 2VCB(G) (d) 2ECC(G) (e) 2ECB(G)

Figure 2.9: An overview of the 2-connectivity of a digraph.

2-edge-connected components. The 2-edge-connected components (2ECC) of a di-

graph G are its maximal 2-edge-connected subgraphs as shown in Figure 2.9-(d).

2-edge-connected block. We define a 2-edge-connected block (2ECB) of a digraph

G = (V,E) as a maximal subset B⊆V such that ∀u,v∈ B, u↔2e v. Therefore, in 2ECB,

two vertices u and v are in same 2ECB by using the edges, which belong to other 2ECBs

§To see the statement of Menger’s Theorem, please refer the Appendix A.2.1.
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as shown in Figure 2.9-(e).

2.2.6 Vertex Connectivity

Strong Articulation Point. Let G = (V,E) be a directed graph. A vertex v ∈ V (G)

is a strong articulation point (SAP), if its removal increases the number of strongly

connected components of G. For a digraph, strong articulation points are also called

the 1-vertex cuts as shown in Figure 2.9-(a), where the vertices c, f ,g (red color) are

SAPs. A digraph of size |V (G)|= n, could have at most n strong articulation points. It

can be realized by the graph of a simple cycle where each vertex is a SAP. The process

to compute the strong articulation points of a graph is analogous to the computation of

the strong bridges. The only difference is that for SBs, we need to use the connectivity

relation between the edges whereas for SAPs we need to use the connectivity relation

between the vertices. Therefore, SAPs of a digraph can also be computed in a linear

time [88]. We will explain the available algorithms to compute the SAPs and its relation

with dominators in next Chapter.

2-Vertex-Connected. Let G = (V,E) be a directed graph, two different vertices v,w∈

V (G) are called 2-vertex-connected, if there are two internal vertex-disjoint paths from

v to w and two internal vertex-disjoint paths from w to v. Note that, a path from v to w

and a path from w to v need not be vertex-disjoint. We denote this 2-vertex-connected

relation between two vertices v and w by v↔2v w. If ∀v,w ∈V (G), v↔2v w, then G is

said to be 2-vertex-connected. Furthermore, if G is 2-vertex-connected, then it does not

have any strong articulation point. Equivalently, by Menger’s Theorem, v↔2v w, only

if the removal of any vertex different from v and w leaves them in the same strongly

connected component. But unlike the 2-edge-connected relation, the converse is not

always true. It holds only if v and w are not adjacent to each other. The reason is two

mutually adjacent vertices are left in the same strongly connected component by the

removal of any other vertex, but they are not 2-vertex-connected.
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2-vertex-connected components. The 2-vertex-connected components (2VCC) of a

digraph G are its maximal 2-vertex-connected subgraphs as shown in Figure 2.9-(b).

2-vertex-connected block. We define a 2-vertex-connected block (2VCB) of a di-

graph G = (V,E) as a maximal subset B ⊆ V such that ∀u,v ∈ B, u↔2v v. Therefore,

the paths between two vertices u and v of a same 2VCB may contain the vertices and

edges that belong to other 2VCBs as shown in Figure 2.9-(c).

2.3 Undirected Graphs Vs Directed Graphs

As we noticed in Figure 2.9, the 2-edge-connected (resp., 2-vertex-connected) blocks

are not identical with the 2-edge-connected (resp., 2-vertex-connected) components in

directed graphs but they are same for the undirected graph. In the directed graph, two

different vertices may be 2-edge-connected but may lie in different 2-edge-connected

component. Similarly, two vertices from the different 2-vertex-connected components

may be in a same 2-vertex-connected block. Hence, these characteristics of 2-connectivi-

ty have the much richer and complicated structure in digraphs. Let us take the example

of a 2-edge-connected; in the undirected connected graphs, if we remove all the bridges

then left connected components are the 2-edge-connected components (i.e., also iden-

tical with 2-edge-connected blocks). But in the case of directed graph, the 2-edge-

connected components, the 2-edge-connected blocks, and the strongly connected com-

ponents left after the removal of all strong bridges are not necessarily the same. These

observations are better explained in Figure 2.10. Therefore, many notions for undi-

rected connectivity do not translate to the directed case; see, e.g., [71, 83]. Moroever,

connectivity-related problems for digraphs are notoriously harder than those for undi-

rected graphs. There are very few properties can be translated from undirected graph to

directed graph, but they are much more complex to implement in the directed graph.
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Figure 2.10: (a) A strongly connected digraph G, and its strong bridges, shown in red;
(b) The strongly connected components left after removing all the strong bridges from
G; (c) The 2-edge-connected blocks of G; (d) The 2-edge-connected components of G;
(e) An undirected graph G, and its bridges shown in red; (f) The connected compo-
nents left after the removal of all bridges of G corresponding to the 2-edge-connected
components of G, and to the 2-edge-connected blocks of G. (Viewed better in color.)

2.4 Critical Node

Let G be a directed graph, and C1,C2, . . . ,C` be its strongly connected components. The

size |Ci| of a strongly connected component Ci is the number of vertices in Ci. We define

the connectivity value of G as

f (G) =
`

∑
i=1

(
|Ci|
2

)
.

Note that f (G) equals the number of vertex pairs in G that are strongly connected.

We can see an example in Figure 2.11, where the graphs G1,G2 and G3 have different

connectivity values even if they have the equal number of vetices.

We already explained that the removal of a strong articulation point from a digraph

G, disconnects G. If we scruntinize this property of SAPs, we discover the existence
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Figure 2.11: Connectivity value of graphs G1,G2 and G3. Even though all of them have
the equal number of vertices, their connectivity value are different according to the size
and number of SCCs they have.
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Figure 2.12: A strongly connected digraph G (i), The strongly connected components of
G\ v, for v ∈ {a,b, f ,c,d}, are shown in figures (ii),(iii),(iv),(v)and(vi) respectively.
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of some specific vertex whose removal causes the graph to have the minimum pairwise

strong connectivity. This type of particular node is called a highly influential node

or a most critical node of the graph. For example, as shown in Figure 2.12, if we

remove a non strong articulation point d from G, then G will still be strongly connected

and connectivity value of G will be decreased to
(

n−1
2

)
from

(
n
2

)
, which is not a

significant decrement (Figure 2.12 (vi)). But if we remove any of the SAPs {a,b,c,e, f},

then G will be decomposed into several SCCs. Moroever, if we remove either a or b

or c, or e, then G will have only 2 different SCCs (Figure 2.12 (ii), (iii), (v)), but if

we remove a vertex f , then G will have the maximum number of strongly connected

components, i.e., 5 (Figure 2.12 (iv)). Therefore, even though G has several SAPs, here,

the vertex f is a most critical node.

Let v be a strong articulation point and let G \ v denotes the digraph obtained after

deleting the vertex v together with all its incident edges. Let S ⊆ V be a set of at most

k vertices. Then G \ S denotes the digraph obtained after deleting all vertices in S and

their associated edges. If the connectivity value of residual graph G \ S is maximally

minimized, i.e., if S = min
S⊆V

f (G\S), then S will be the set of most critical nodes of

G.

2.5 Security and Authentication System

The field of Biometrics examines the unique physical or behavioral traits that can be

used to determine a person’s identity. Biometric recognition is the automatic recogni-

tion of an individual based on one or more of these traits. This method of authentication

ensures that the person is physically present at the point-of-identification and makes un-

necessary to remember a password or to carry a token. The most popular biometric traits

used for authentication are the face, voice, fingerprint, iris and handwritten signature.

In our study, we focus on “Handwritten Signature Verification" (HSV), which is a

most common and trusted method for user identity verification. HSV can be broadly

classified into online and offline signature verification, based on the device used and

on the method used to acquire the data related to the signature. Offline methods pro-

40



2.6. Related Work

cess handwritten signatures taken from scanned documents, which are, therefore, rep-

resented as images. This means that offline HSV systems only process the 2D spatial

representation of the handwritten signature (i.e., its shape). Conversely, online systems

use specific hardware, such as pen tablets, to register pen movements during the act of

signing. For this reason, online HSV systems can process dynamic features of signa-

tures, such as the time series of the pen’s position and pressure. They do so by using

specific hardware, such as pen tablets, in order to record pen movements and other

variables during the act of signing.

2.6 Related Work

We already explained in section 2.3 such that same problem in the directed graph is no-

toriously harder to implement than the undirected graph. For undirected graphs, all

bridges (resp., articulation points) and 2-edge-connected (resp., 2-vertex-connected)

components can be computed in linear time, essentially by using the same algorithm

which used the depth first search presented by Tarjan [154] 40 years ago. Therefore,

when the same problem is considered for digraphs, it becomes much more complex

and challenging. Italiano et al. [88] presented the algorithms that compute all strong

bridges and strong articulation points of a digraph in linear time in 2012. The running

time bound for 2-vertex-connected (resp., 2-edge-connected) components is still not lin-

ear. The very recent optimal time bound for 2-vertex-connected components (resp., 2-

edge-connected components) is O(min{m3/2,n2}) [36, 84]. The algorithm presented in

[84] improved a previous algorithm where O(mn) time bounds algorithms appeared in

[90, 126]. All the algorithms compute the 2-vertex-connected (resp., 2-edge-connected)

components of a digraphs following three different ideas: (i) they repeatedly remove the

strong articulation point (resp., strong bridge) of a strongly connected component and

break it into many strongly connected components until and unless they will not have

the strong articulation points (resp., strong bridges). At the end, the remaining graph

will become the 2-vertex (resp., 2-edge) connected components; (ii) they repeatedly

calculate the forward and reversed dominator tree to find the non-trivial vertex (resp.,
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edge) dominators and remove them from the graph to break into its strongly connected

components. The process continue until the graph has a non-trivial vertex (resp., edge)

dominators. When the graph does not have any non-trivial vertex (resp., edge) domina-

tor, then it would become the 2-vertex-connected (resp., 2-edge-connected) component

graph; (iii) they use hierarchical sparsification technique, searching for the strong artic-

ulation point (resp., strong bridge) within certain vertices of the graph. If they found

any strong articulation points (resp., strong bridge), then break the graph by removing

such strong articulation points (resp., strong bridges) to get a 2-vertex-connected (resp.,

2-edge-connected) components of the graph.

Italiano et al. [88] presented an alogorithm such that strong articulation points (resp.,

strong bridges) can be computed in linear time O(m+ n). Furthermore, Italiano et al.

[88] also proved that, a digraph G = (V,E) of vertex size n can have at most 2n− 2

strong bridges. In case of strong articulation points, we can realized that G can be

a simple cycle where each vertex v ∈ V (G) is a SAP. Hence, G can have at most n

strong articulation points. Therefore, if the algorithm follows the (i) technique to get

the 2-vertex-connected components (resp., 2-edge-connected components) of a digraph,

then there can be at most O(n) rounds and thus the total time taken by the algorithm is

O(mn). Erusalimskii and Svetlov [49] proposed an algorithm that reduces the problem

of computing the 2-vertex-connected components of a digraph to the computation of the

2-vertex-connected components in an undirected graph. For every vertex v, the reduc-

tion process repeatedly computes the strongly connected components of all subgraphs

G\ v and deletes the edges that connect different strongly connected components. This

process is repeated until and unless no edge is removed in all current subgraphs G\v; the

2-vertex-connected components of the resulting digraph G are identical to the 2-vertex-

connected components of the undirected version of G. On the other hand, Erusalimskii

and Svetlov [49] did not analyze the running time of their algorithm. Later, Jaberi [90]

showed that the algorithm of Erusalimskii and Svetlov [49] has O(nm2) running time.

Jaberi [90] also proposed two different algorithms to compute the 2-vertex-connected

components of a digraph with O(mn) running time. The first algorithm follows the (i)
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technique (i.e., it decomposes the digraph by repeatedly removing a strong articulation

point at a time). The second algorithm follows the (ii) technique to get the 2-vertex-

connected components, dividing the digraph using a dominator tree [106]. Later Di

Luigi et al. [44] also proposed an algorithm to compute the 2-vertex-connected com-

ponents of a digraph in O(mn) time using the dominator tree. Though the algorithms

presented in [90] and [44] have the same asymptotic behavior, the algorithm proposed

by Di Luigi et al. [44] produced better results in practice.

Henzinger et al. [85] first introduced the hierarchical graph sparsification for undi-

rected graphs. Chatterjee et al. [34] and Chatterjee and Henzinger [33] extended this

technique to directed graph and to game graphs (Consider a directed graph G = (V,E)

with a partition (V1,V2) of V , which is called a game graph [35].), respectively. The

sparsification technique allows to replace the ‘m’ in the O(mn) running time by an ‘n’,

yielding O(n2). Henzinger et al. [84] define a 2-isolated set of a digraph G = (V,E),

where G is not necessarily strongly connected, to be a set of vertices S⊆V such that (a)

cannot be reached by the vertices of V \S or (b) can be reached from V \S only through

one vertex v. Every 2-vertex-connected component of G contains either only vertices

of S∪{v} or only vertices of V \ S. Hence, if such a set S is found, we can compute

recursively the 2-vertex-connected components in the subgraphs induced by S∪{v} and

V \S respectively.

The algorithm of Henzinger et al. [84] is based on a fast computation of 2-isolated

sets using subgraphs of the input digraph G. As shown in [84], a 2-isolated set S of type

(a) can be found by computing strongly connected components. Similarly, a 2-isolated

set S of type (b) can be found by computing dominators in a suitably defined flow

graph. In order to find 2-isolated sets fast, Henzinger et al. [84] apply the hierarchical

sparsification. They start the search for a 2-isolated set in a subgraph G′ of G such that

∀v ∈ G′, IndegG′(v) = IndegG(v) for the first 2i incoming edges in E. If no 2-isolated

set is found, they repeatedly increase i by 1 until the search is successful or G′ = G. In

this way, they showed that the search takes time O(n) per vertex in the 2-isolated set,

which gives an O(n2) total time bound.
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We can extend the notion of 2-connectivity to the notion of k-connectivity define as

follows. Any digraph is called the k-vertex-connected, if any nonadjacent vertices of

the graph will be still in the same strongly connected components after removing the

k−1 vertices. Similarly, if the vertices are in same strongly connected components after

removing the k− 1 edges, then the graph is called the k-edge-connected. The compu-

tation of the k-edge-connected components of a digraph was first considered by Matula

and Vohra [115], where they gave an O(n3) time bound algorithm. Henzinger et al. [84]

also extended their quadratic time algorithm to compute the k-vertex-connected (resp.,k-

edge-connected) components of a digraph which has the O(n3) (resp., O(n2 logn)) time

bound.

The algorithms for the 2-vertex-connected (resp., 2-edge-connected) blocks were

developed in 2014. Jaberi [89] proposed the algorithms to compute the 2-vertex-connected

blocks of any digraph G = (V,E) in O(mn) time. Jaberi [89] also presented an algo-

rithm to compute the 2-edge-connected blocks of any digraph in O(n min{m,b∗n}) time

where b∗ is the number of strong bridges in G. Later, Georgiadis et al. [71] proposed the

three different algorithms for the 2ECB computation in a digraph G; (i) simple iterative

algorithm; (ii) recursive algorithm with O(mn) time complexity; (iii) fast algorithm

with linear time O(m+n) bound. Their fast algorithm with linear time bound is the first

algorithm to compute the 2-edge-connected blocks of a digraph in linear-time. Again

in 2015, Georgiadis et al. [73] proposed an algorithm for the 2ECB computation based

on loop nesting tree and dominator tree information. For the 2 vertex-connected block

computation, in 2014, Georgiadis et al. [72] presented two different algorithms, (i) sim-

ple with O(mn) time bound and (ii) fast with linear time bound O(m+ n). Again in

2015, Georgiadis et al. [73] presented the algorithm to compute the 2VCB of a digraph

in linear time, as in the case of 2ECB, the algorithm uses the loop nesting tree and

dominator tree information.

Di Luigi et al. [44] performed the first experimental study on 2-vertex-connected

(resp., 2-edge-connected) components (resp., blocks) of a directed graph. They com-

pared linear-time algorithm for computing the 2-edge-connected blocks to simple O(mn)-
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time algorithms that are presented in [71]. Similarly, for the 2-vertex-connected blocks,

their experimental observation compared the linear time algorithm with the simple

O(mn) time algorithms that are available in [72]. In addition, Di Luigi et al. [44] also

compared the running time of the algorithms that compute the 2-vertex-connected com-

ponent that are presented in [49], [92], and [44] and have the running time O(m2n),

O(mn), and O(mn) respectively.

For the critical node detection problem (CNDP), to the best of our knowledge, we

present a pioneer algorithm to find the most critical node (one vertex cut) off a directed

graph. The previous algorithms were designed for the undirected graphs and we al-

ready explained that not all the properties of the undirected graph can be translated to

directed graph. In fact, the properties which can be transformed from undirected graph

to directed graph are much more complex in the latter case. Nevertheless, here we are

going to discuss the historical development of the algorithms to compute the most crit-

ical node of the undirected graph. The CNDP problem is related to variety of graph

partitioning problems in the literature and has been extremely active research area from

last 15 years. The graph will be divided into several partitions after the removal of

highly influential nodes.

Addis et al. [2] define a dynamic programming recursion that solves the CNDP in

polynomial time when the graph has bounded treewidth. The treewidth of G is the mini-

mum width of a tree decomposition of G. The worst-case complexity of their algorithm

is O(n3k2), where k is the number of critical nodes that are supposed to be removed from

the undirected graph. Di Summa et al. [45] presented an integer linear programming

model of the branch and cut algorithms, where non-polynomial numbers of constraints

are provided. Again Veremyev et al. [171] and Veremyev et al. [172] reformulated a

CNDP algorithm that requires Θ(n2) constraints and ascertained the optimal solutions

for graphs. Apart from the algorithms, many heuristics are available to decompose the

graph by removing the most critical nodes. Arulselvan et al. [17] used a solution to

the maximum independent set problem and tested it on a limited number of network

structures with promising results. The maximum independent set problem starts from

45



Chapter 2. Preliminaries and State of the Art

a local search; it repeats the process until and unless the desired termination criteria

is reached. Two stochastic search algorithms and randomized rounding-base algorithm

are developed in [167] and [169, 170] respectively. Moreover, Dinh et al. [47] pro-

posed a pseudo-approximation algorithm with O(logn log(logn)). Note that, the given

time bound is for the approximation ratio. Very recently, Ventresca and Aleman [168]

presented a linear-time algorithm for the k = 1 case in undirected graphs. Their algo-

rithms exploits the relation between depth-first search DFS and articulation points and

biconnected components of an undirected graph [154].

Regarding the online handwritten signature verification(HSV), it suffers from sev-

eral limitations. In fact, handwritten signatures are usually acquired using digitizing

tablets connected to a computer. Due to the limited hardware configuration capacity

of common low-end mobile devices (such as mobile phones), they may not be able to

support the verification algorithms or may be too slow to run the verification algorithm

(due to limited computational power). As a result, the range of possible uses of the

verification process is strongly limited by the hardware needed. The systems available

in [41, 111, 151, 165, 176] can address only partially these issues: they are supported

by mobile devices, but they are not inherently designed for common low-end devices

such as mobile phones; several approaches make use of pen pads (special purpose hard-

ware for handwriting), signature tablets (special purpose desktop and mobile hardware

for signing), interactive pen displays (complete instruments for working in digital ap-

plications), Kiosk systems and PC Tablets. As for the online HSV systems described in

[23, 104, 120], even if experiments related to online HSV were carried out on low-end

devices in order to evaluate the verification accuracy, no analysis addressing the compu-

tational time is used in the algorithm design (which is particularly important, due to the

limited computational power of mobile devices). In our work, we develop a new algo-

rithm for low-end devices and performed an experimental analysis, which is specially

focused on the computational time in those types of devices.
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Fundamental Algorithms

3.1 Tree Graphs

A Tree graph is a graph, for which there exist a vertex called source (or root) such that

there is a unique simple path from it to every other vertex. The root vertex is the head

of the edges; it is unique for directed graphs but there could be several for undirected

graphs. Let T be a directed tree graph, v and w be the vertices of T , and e = (v,w) be an

edge of T . Then the notation “ v→ w in T " (or v = t(w)) means that v is the father (or

parent) of w and w is a son (or child) of v. Every vertex except the root has its unique

parent in T . Moreover, the notation “ v ∗−→ w in T " (or T [v,w]) implies that there exist

a path from v to w in T . In this case, v is an ancestor of w (proper ancestor if v 6= w,

denoted by T (v,w] or v +−→ w), and w is a descendant of v (proper descendant if v 6= w,

denoted by T (v,w] ). Every vertex is a non-proper ancestor (resp., descendant) of itself.

Let T and T ′ be two tree graphs such that T ′ ⊆ T , then T ′ is called a subtree of T .

For any rooted tree T and vertices u,v ∈V (T ), Tu (resp., T (v)) denote the subtree of T

rooted at u (resp., a tree contains v). Similarly, A(v) (resp., Ã(v)) and D(v) (resp., D̃(v))

represent the set of an ancestor (resp., proper ancestor) and the set of descendants

(resp., proper descendants) of v in T . Figure 3.1 illustrates these notations.

We can extend the ancestor (resp., descendant) relationship to edges illustrate in

Figure 3.2 as following. Let us consider the distinct vertices u,v,w,z ∈V (T ) and edges

e1 = (u,v), e2 = (w,z) ∈ E(T ). The edge information give us that, u and w are the

parent of v and z respectively. Moreover, If z is the proper ancestor of u then also of v.

It implies that w,z and e2 are the proper ancestor of e1 and e1 is the proper descendant

of w,z and e2, see Figure 3.2 (i). Similarly, if w is the proper descendant of v then also

of u, which implies that w,z and e2 are the proper descendants of e1 and e1 is the proper
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Figure 3.1: Tree notations, Let us consider the vertex 7, then
the ancestors A(7) = {1,4,7}, proper ancestors Ã(7) = {A(7) −
{7}} = {1,4}, children C(7) = {13,14,15} descendants, D(7) =
{7,13,14,15,16,17,18,19,20,21,22,23,24,25,26}, and proper descendants,
D̃(7) = {D(7) − {7}} = {13,14,15,16,17,18,19,20,21,22,23,24,25,26}. (Bet-
ter viewed in color.)

ancestor of w,z and e2 as shown in Figure 3.2 (ii). If T is a tree and contains all the

vertices of a graph G, then T is called the spanning tree of G.
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Figure 3.2: Extended notions of a tree graph

48



3.2. Flow Graph

3.2 Flow Graph

We construct the flow graph of strongly connected digraph G = (V,E) by choosing a

start vertex s ∈V (G). If G is not strongly connected, then we can do the same process

for each strongly connected component of G separately. Without loss of generality,

let us assume that all graphs are strongly connected. Under consideration, for all the

vertices v ∈ {V (G)−{s}}, there exists a path from s to v and vice-versa in both G and

GR. In the whole thesis, we fixed the arbitrary start vertex s for the flow graph, and to

avoid the ambiguities; we denote the flow graphs of G and GR (i.e., reverse graph of G)

by Gs and GR
s respectively unless otherwise stated. To create the flow graph we have to

explore the outgoing edges of the newly visited vertex. Many algorithms for analyzing

a flow graph are based on the depth-first search technique. We also explore a flow graph

by executing a depth-first search procedure that we are going to explain in next section.

3.3 Depth-First Search

The depth-first search (DFS) is a fundamental tool to design efficient algorithms in

graph theory. It has been used for finding solutions to problems in combinatorial theory

and artificial intelligence [78, 128]. In this method, for any graph G = (V,E), all

the vertices are unexplored at the beginning. To start the process, it chooses a vertex

s ∈ V (G) as a root and then starts to explore the graph in “depth" as much as possible

by seeking the outgoing edges from the most recently discovered vertex. It marks the

vertex w as visited when it meets the w at the first time. After that, if there is an

unexplored edge e = (v,w)∈ E(G) being explored then it ignores the both e and w. The

process will continue until and unless all the vertices have been discovered. Procedure

CreateDFS and DFS explain the pseudocode of this process. It is evident that, all the

vertices that are reachable from the root will be discovered. If the graph is not strongly

connected, then some vertices will remain to find. In that case, it will select a new

vertex as a root from the remaining vertices and repeats the same process. But in our

case, it will not happen, since we already considered only strongly connected graphs
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for the simplicity.

Gs

𝑏 𝑐 𝑑

𝑒 𝑓 𝑔 ℎ 𝑖 𝑗

𝑘 𝑙 𝑚 𝑛 𝑜 𝑝

𝑠

Figure 3.3: A flow graph Gs. The solid edges in Gs are the edges of depth first search
trees with root vertex s.

Procedure CreateDFS(G)

1 foreach v ∈V (G) do
2 visited(v) = f alse

3 DFS(s) // s is a source vertex

Procedure DFS(v)

1 visited(v) = true
2 for all edges (v,w) ∈ E(G) do
3 if visited(w) = f alse then
4 DFS(w)

In DFS, each edge is explored only once but it yields much more information than

list of reachable vertices from the root. We can study the connectivity structure and

edge properties through this process. That will help us to extend the DFS in order to

find a dominator tree, find the strongly connected component in a graph, and to create

a loop nesting forest. We will explain these on next section. For the moment, let us
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observe the edge properties by adding few more parameter in DFS computation. We

can assign the preorder* number for each vertex v ∈ V (G) according to its appearance

in the tree formation, such that the descendants of v will be ordered consecutively with

v first. When the DFS visit a new vertex v, then v became a new input parameter for

the search and start to explore the outgoing edge from it. Let us keep all the vertices

on stack at beginning. During the DFS execution, if all the outgoing edges of a vertex

has been explored then we unstacked it. The vertices are listed on a stack in order,

which help us to determine the path from the source to the current processed vertex.

If we keep track of the time of each vertex when it is unstacked (so called sorder(v)),

then Tarjan [154] define the following categories for the edges, such that every edge

e = (v,w) ∈ E(G) in DFS tree will lies in one of them.

i. e = (v,w) with w unvisited when (v,w) is explored, is called a tree edge.

ii. e = (v,w) with w stacked when (v,w) is explored, is called a backward edge.

iii. e= (v,w) with pre(v)< pre(w) and w unstacked when (v,w) is explored, is called

a forward edge.

iv. e= (v,w) with pre(v)> pre(w) and w unstacked when (v,w) is explored, is called

a cross edge.

Procedures CreateDFSCategory and DFSCategory explain the extended DFS algorithm

in detail. Figure- 3.4 illustrates the process taken by the Procedure DFSCategory for

the graph shown in Figure 3.3. Lemmata 3.3.1 - 3.3.5 from [154, 158] explain the basic

properties of the variables calculated by the DFSCategory. Tarjan [154] contains the

proofs such that these calculation require the O(|V |+|E|) time and space. We will use

this extended version of the DFS in our analysis later.

Lemma 3.3.1 (Path Lemma [154]). Let T be a DFS tree of a strongly connected digraph

G = (V,E) and let pre(v) denote the preorder number of vertex v in T . If v and w are

vertices such that pre(v) < pre(w), then any path from v to w must contain a common

ancestor of v and w in T .
*For the details of preorder, inorder and postorder traversal technique please refer the Appendix A.3.3
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Procedure CreateDFSCategory(G)
/* nextp and nexts are the last preorder number and stack number

respectively, that are assigned to the vertices. The preorder(v) = 0 ⇐⇒ v
has not been visited yet and sorder(v) = 0 ⇐⇒ v has not been unstacked

yet. Similarly, the descendants(v) counts the total descendants of v */

1 next p = 0 , nexts = |V (G)|+1
2 foreach v ∈V (G) do
3 preorder(v) = 0
4 descendants(v) = 0
5 sorder(v) = 0

6 DFSCategory(s) // s is a source vertex

Procedure DFSCategory(v)
/* v is the most recently visited vertex */

1 descendants(v) = 1
2 next p = preorder(v) = next p+1
3 for all edges (v,w) ∈ E(G) do
4 if preorder(w) = 0 then
5 label(v,w) is a tree edge
6 DFSCategory(w)
7 descendants(v) = descendants(v)+descendants(w)

8 else if sorder(w) = 0 then
/* w is stacked */

9 label(v,w) is a backward edge

10 else if preorder(v)< preorder(w) then
11 label(v,w) is a forward edge

12 else
13 label(v,w) is a cross edge

14 if w is a last adjacent vertex of v in adjacency list then
15 nexts = sorder(v) = nexts−1

Proof. Let us suppose T is a DFS tree of a strongly connected digraph G. Then there

are three different cases, illustrated in Figure 3.5, (i) v ∗−→ w in T (ii) w ∗−→ v in T (iii)

Neither v ∗−→ w nor w ∗−→ v in T .

For the case (i) and (ii), it is trivial that DFS process ancestor at first and then

descendant later. It means that DFS assigns the preorder number to the ancesor at first
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Figure 3.4: Extended DFS algorithm in a flow graph Gs with root s. Black edges are
the tree edges, red are the forward edges, blue are the backward edges and green are the
cross edges. (Better viewed in color.)

𝑤

𝑣

𝑐𝑎𝑠𝑒 − (𝑖)
𝑣

𝑤

𝑐𝑎𝑠𝑒 − (𝑖𝑖)

𝑐

𝑧

𝑣 𝑤

𝑐𝑎𝑠𝑒 − (𝑖𝑖𝑖)

Figure 3.5: Illustration the cases of Path Lemma 3.3.1, for case - (iii), sets A (shown in
orange) and B (shown in blue).

and then descendans later. Hence, for case (i), (pre(v) < pre(w)) and for case (ii),

(pre(w)< pre(v)).
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For case (iii), without loss of generality, let us consider that DFS process the vertex

v before the vertex w (i.e., pre(v)< pre(w)).

We are going to prove it by contradiction.

Let P be a path that connects v to w in G. Path P exists because G is strongly

connected. Moreover, let us suppose on the contrary that P does not pass through any

common ancestor of v and w in T . Let c be the lowest common ancestor of v and w and

a vertex z is lies in a path (c,w) (i.e., c ∗−→ z and z ∗−→ v) in T . Let A be the set of vertices

that are visited by DFS before z in T or lies in a subtree Tz (i.e., tree rooted at z), and B

be the set of vertices visited after z in T . Thus, v ∈ A and w ∈ B. Let x ∈ A be the last

vertex of P in A and y be the successor of x on P (i.e., the edge (x,y) ∈ P). Since P does

not have a common ancestor of v and w, therefore, the edge (x,y) must belong to A×B.

Hence, the following relationship must hold true -pre(x) ≤ pre(z) < pre(y). But such

a relationship is not possible because all the out-neighbors of x must be visited before

DFS traversal finishes for vertex x. Hence we get a contradiction.

Note. Path Lemma 3.3.1 gives the concept of the nearest common ancestor (or also

called the lowest common ancestor) of two different vertices, which is used by the

algorithms in our analysis later.

Lemma 3.3.2 (Tarjan [158]). Suppose that all vertices of a directed graph G are reach-

able from the source s, and that the edges of G are divided into categories using Proce-

dure CreateDFSCategory. Then:

i. The tree edge form a directed tree T with root s which contains all vertices of G.

ii. If e = (v,w) is a tree edge in T , then =⇒ v→ w in T (or v is the parent of w in

T ) =⇒ pre(v)< pre(w).

iii. If e = (v,w) is a backward edge in T , then w ∗−→ v in T (or v is the descendant of

w in T ) =⇒ pre(v)> pre(w)

iv. If e = (v,w) is a forward edge in T , then v ∗−→ w in T (or v is an ancestor of w in

T ) =⇒ pre(v)< pre(w)

54



3.4. Strongly Connected Component

v. If e = (v,w) is a cross edge in T , then neither v ∗−→ w in T nor w ∗−→ v in T and

pre(v)> pre(w).

Lemma 3.3.3 (Tarjan [158]). If e = (v,w) is a tree edge, a forward edge or a cross

edge, sorder(v) < sorder(w). Similarly, if e = (v,w) is a backward edge sorder(v) >

sorder(w).

Lemma 3.3.4 (Tarjan [158]). Let v be a vertex in G. Then the number of descendants

of v in the spanning tree T is given by descendants(v) = 1+ ∑
v→w

descendants(w)

Lemma 3.3.5 (Tarjan [158]). Statements i, ii, iii, and iv below are equivalent.

i. v ∗−→ w in T .

ii. pre(v)≤ pre(w) and pre(w)< pre(v)+descendants(v)

iii. sorder(v)≤ sorder(w) and sorder(w)< sorder(v)+descendants(v)

iv. pre(v)≤ pre(w) and sorder(v)≤ sorder(w)

We already have the algorithm that counts the total descendants of each vertex.

However, if a vertex u is the ancestor of v and v is the ancestor of w, then w is the

descendant of both vertexes u and v. So, we can collect the descendants of each vertex

in O(n) time from the DFS tree given by the procedure ComputeDescendants.

3.4 Strongly Connected Component

Let us recall the definition of strongly connected component (SCC) from Chapter 2 -

section 2.2.2. A strongly connected component of a digraph G = (V,E) is a maximal

strongly connected subgraph of G such that all of its vertices are strongly connected to

each other. In this section, we are going to illustrate some existing algorithms that are

used to compute the strongly connected components of a given graph. Two different

algorithms are available to find the SCC, one proposed by Tarjan [154] and one by

Gabow [60]. Both of them require O(m+n) time and space.
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Procedure ComputeDescendants(G)

1 INTEGER index = 0
/* k is the highest preorder number */

2 Create three arrays start,end and descendants of size |V (G)|= n = k
3 for i← k to 1 do
4 v = label(i)
5 index = index+1
6 start(v) = end(v) = index
7 descendants(index) = v
8 foreach children c of v in T do
9 if start(c)< start(v) then

10 start(v) = start(c)

/* we can get the common descendants of any vertex v as following */

11 for i← start(v) to end(v) do
12 print descendants(i)

3.4.1 Tarjan’s Algorithm

In 1972, Tarjan [154] presented an algorithm to compute the SCC, which is incorporated

in Procedure SCC-TARJAN and is based on the following lemmas (3.4.1 to 3.4.4),

proofs are available in [154]. Moreover, Tarjan’s algorithm to compute the SCCs of a

given graph is also included in text books [5, 25, 26, 53, 87, 101, 114, 118, 144, 174].

Lemma 3.4.1. Let G = (V,E) be a directed graph. We may define an equivalence

relation on the set of vertices as follows: two vertices v and w are equivalent if there is

a closed path P:v ∗=⇒ v, which contains w. Let Vi, 1 ≤ i ≤ n be the distinct equivalence

classes under this relation. Let Gi = (Vi,Ei), where Ei = {(v,w) ∈ E(G)|v,w ∈Vi}.

Then:

i) Each Gi is strongly connected.

ii) No Gi is a proper subgraph of a strongly connected subgraph of G.

Lemma 3.4.2. Let v and w be vertices in G which lies in the same strongly connected

component. Let F be a spanning forest of G generated by repeated depth-first search.

Then v and w have a common ancestor in F. Further, if u is the highest numbered
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common ancestor of v and w, then u lies in the same strongly connected component of

v and w.

Lemma 3.4.3. Let C be strongly connected component in G. Then the vertices of C

define a subtree of a tree in F, the spanning forest of G. The root of this subtree is

called the root of the strongly connected component of C.

Proof. The problem of finding the SCCs of a graph G can be reduce to the problem of

finding the roots of SCCs. We can construct a simple test to determine if a vertex is the

root of a SCC as following.

LOWLINK(v) = min ({v} ∪ {w |∃ a cross edge c ∈ E such that v ∗−→ c→ w and

∃u ∈V ( u ∗−→ v & u ∗−→ w & u and w are in the same strongly connected component of

G)}).

That is LOWLINK(v) is the smallest vertex which is in the same component as v and

is reachable by traversing zero or more tree edges followed by at most one backward or

cross edge.

Procedure SCC-TARJAN(G)

1 INTEGER i = 0
2 create the empty global stacks LOWLINK and NUMBER of size |V (G)|= n
// Empty stack of points

3 foreach v ∈V do
4 LOWLINK (v) = 0
5 NUMBER (v) = 0

6 foreach w ∈V (G) do
7 if w is not yet numbered then
8 STRONGCONNECT-TARJAN(w)

Lemma 3.4.4. Let G be a directed graph with LOWLINK defined as above relative to

some spanning forest F of G generated by depth-first search. Then v is the root of some

strongly connected component of G if and only if LOWLINK(v) = v.
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Procedure STRONGCONNECT-TARJAN(w)

1 LOWLINK(v) = NUMBER(v) = i = i+1
2 put v on stack of points
3 foreach (v,w) ∈ E(G) do
4 if w is not yet numbered then

// (v,w) is a tree edge

5 STRONGCONNECT-TARJAN(w)
6 LOWLINK(v) = min( LOWLINK(v), LOWLINK(w) )

7 else if NUMBER(w) < NUMBER(v) then
// (v,w) is a backward or cross edge

8 if w is on stack of points then
9 LOWLINK(v) = min( LOWLINK(v), NUMBER(w) )

10 if LOWLINK(v) = NUMBER(v) then
// v is the root of the component, start new strongly connected component

11 while w on top of point stack satisfies NUMBER(w) ≥ NUMBER (v) do
12 delete w from point stack and put w in current component.

3.4.2 Gabow’s Algorithm

Process. Gabow [60] proposed an algorithm to compute the SCC based on the idea

that SCC is the finest acyclic contraction (for the Contraction, please refer Chapter 2

section 2.1.4) of a graph G = (V,E). We provide the pseudocode details of this algo-

rithm in Procedure SCC-GABOW, which is adapted from [60]. The algorithm main-

tains a graph H that contains the contracted information of G with some deleted vertices.

It also maintains a path P in H. Initially H is the given graph G. If H is an empty set

(i.e., it does not have any vertices) then the algorithm stops. Otherwise, it starts a new

path P by choosing a vertex v and setting a path P = (v). After that it continues as P =

(v1, . . . , vk) by choosing an edge (vk,w), which is directed from the last vertex of P and

do the following process.

• If w /∈ P, add w to P, making it the new last vertex of P. Continue growing P.

• If w ∈ P, say w = vi, contract the cycle vi, vi+1, . . . , vk, both in H and in P, P is

now a path in a new graph H. Continue growing P

• If no edge leaves vk, output vk as a vertex of the strong component graph. Delete
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Procedure SCC-GABOW(G)

1 create the empty global stacks S,B, I of size |V (G)|= n
2 INTEGER c = n
3 foreach v ∈V do
4 I[v] = 0

5 foreach v ∈V do
6 if I[v] = 0 then
7 STRONGCONNECT-GABOW(v)

vk from both H and P. If P is now non-empty then growing P continuously.

Otherwise try to start a new path P.

In the path P, we can notice that, if the vk does not have any leaving edges, then vk

is a vertex of the finest acyclic contraction. Thus, the algorithm forms a finest acyclic

contraction of G and computes the SCC.

Explanation Let assume that the graph has n vertices and algorithm numbers the

SCC starting from n+ 1. Two stacks S and B are used to represent the path P. Stack

S contains the sequence of (original) vertices in P and stack B contains the boundaries

between contracted vertices. More precisely, S and B correspond to P = (v1, . . . , vk)

where k = TOP(B), for i = 1, . . . ,k,

vi = {S[ j]:B[i]≤ j < B[i+1]}
�
 �	3.1

When k > 0 we have B[1] = 1. Also when i = k in 3.1, it interpret B[k + 1] to be

TOP(S)+ 1. An array I[1 . . .n] is used to store stack indices. It also stores the corre-

sponding SCC number of a vertex when that number is known. More precisely, for a

given vertex v, the corresponding number of SCCs is calculated as following.

I[v] =


0, If v has never been in P.

j, If v is currently in P and S[ j] = v.

c, If the strong component containing v has been deleted and numbered as c .�
 �	3.2

Since there are only n vertices, hence no confusion between an index j and a com-
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Procedure STRONGCONNECT-GABOW(v)

1 PUSH(v,S) // add v to the end of DFS path P.
2 I[v] = TOP(S)
3 PUSH(I[v],B)
4 for edges(v,w) ∈ E do
5 if I[w] = 0 then
6 STRONGCONNECT-GABOW(w)

7 else
/* Following loop do the contractions and handle the deleted

vertices. */

8 while B[TOP(B)] > I[w] do
9 POP(B)

10 if B[TOP(B)] = I[v] then
11 POP(B)
12 c = c+1
13 while (TOP(S) ≥ I[v]) do
14 I[ POP(S) ] = c

ponent number c in 3.2. A variable c is used to keep the track of numbers of SCCs

formed. Gabow [60] claims that, because of using the variable I in the procedure

STRONGCONNECT-GABOW for multiple proposes, it pays off the speed by 20%

[61, p.19].

Remark. Tarjan’s LOWPOINT method [154] for strong components is presented in

texts [5, 52, 101, 114, 118, 144]. Also, Gabow presented a linear-time implementations

of SCC [60] that uses only stacks and arrays as data structures. A line-by-line compari-

son in the pseudocodes of Gabow’s algorithm and Tarjan’s algorithm showed that both

approaches are similar in terms of lower level resource usage. Moreover, performance

differences are likely to be small or platform-dependent [60]. In our analysis, we used

both of them to compute the SCC of a given digraph.
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3.5 Dominators

3.5.1 Introduction

The concept of dominator was evolved from the flow graph. If Gs is the flow graph

of G, then the dominator relation between the vertices (resp., edges) in Gs is defined as

following. A vertex u (resp., edge e1) is a dominator of vertex v (resp., edge e2), if every

path from the source s to v (resp., edge e2) includes u (resp., edge e1). The dominator

relation of the vertices (resp., edges) of Gs forms a tree called the vertex dominator tree

(resp., edge dominator tree) rooted at s. We mainly focus on the vertex dominator tree

(since both of them have the almost identical properties) that is denoted by Ds or simply

D. The dominator relation (also known as dominance relation) between the vertices in

D is transitive closure (a→ b, b→ c =⇒ a→ c) and hence one single vertex v could

have many dominators which is denoted by dom(v). Thus, the dominator relation can

be represented in compact form as a tree as shown in Figure 3.6, which also has the

other characteristics given below.

i. For each vertex v(6= s) ∈V , s and v are the trivial dominators.

ii. u dominates v ⇐⇒ u is an ancestor of v in D.

iii. If v has non-trivial dominators, then v has a unique immediate dominator called

parent of v in D.

iv. If u is the dominator of v, then all the non-trivial dominators of u also dominates

v.

3.5.2 Applications

The dominators problem has occurred in many application areas and hence they used

the dominator relation. For example, electronics circuit testing, control flow, biological

computation, compiler code generation, program optimization, social network analy-

sis, and etc. In the electronic circuit testing, VLSI test uses the dominator relation for
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Figure 3.6: A flow graph Gs and its corresponding dominator trees D. The solid edges
in Gs are the edges of depth first search trees with root vertex s. The corresponding
digraph G is strongly connected.

identifying the pairs of equivalent line faults in logic circuits [15]. Similarly, the post-

dominator information [56] is used to calculate the control dependencies in program

dependence graph. The dominator analysis is also being applied in theoretical biol-

ogy [10, 11] to analyze the extinction of species in trophic models (or foodwebs). The

program compiler uses the dominator information extensively in global flow analysis,

program analysis and optimization, code generation [7]. The Best-known application

of dominators could be a loop optimization, which enables a host of natural loop opti-

mization [123]. Apart from the code generation, the dominator relation has been used

in structural analysis [145], scheduling algorithm [152] and memory profiling [116]. In

addition, the dominator trees are also used to implement the generalized reachability

constraints in the field of constraint programming, which are helpful in the solution of

ordered disjoint-paths problem [138]. Moreover, they are also needed in the computa-

tion of dominance frontiers [42], which are needed for efficiently computing program

dependence graphs and static single-assignment forms. Furthermore, Graph Connectiv-
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ity, Path Determination Problems [65, 66, 88], and an analysis of Diffusion Networks

[81] are also used the dominator relation.

3.5.3 Algorithms

Development. In the previous section, we discussed the concept of dominator, domi-

nator tree and its application. Now in this section, we are going to discuss the method-

ology to find the dominators. During the last 40 years, many researchers proposed

different kinds of algorithms to solve this problem. In 1972, Allen and Cocke [8] gave

a solution that, given set of data-flow equations, computes iteratively the dominator re-

lation in O(mn2) worst-case time bound. In the same time bound, Cooper, Harvey, and

Kennedy [40] presented a clever tree-based space-efficient implementation of the itera-

tive algorithm in 2006. Their algorithm is much more efficient in practice, however does

not improve the O(mn2) worst-case time bound. Still in 1972, but after Allen and Cocke

[8], Purdom and Moore [136] found an another straight-forward algorithm which has

O(mn) time complexity. The algorithm selects a root and performs the search in G\{v}

for each v ∈ V (G) in a way that collects the vertices w that are not reachable from the

root. Two years after in 1974, Tarjan [158] proposed a solution with O(n logn+m)

time complexity. The algorithm uses the depth-first-search and efficient algorithms for

computing disjoint set unions and manipulating priority queues.

In 1979, the algorithm proposed by Tarjan [158] was improved by Lengauer and Tar-

jan [106], they proposed two different solutions with O(m log(m/n+1) n) and O(mα(m,n))

time complexity, where α(m,n) is an extremely slow-growing functional inverse of the

Ackermann function [160] †. The algorithm performs very well in practice and have

been used in many applications.

Subsequently, on the basis of the Lengauer-Tarjan algorithm, the truly linear-time

algorithms were discovered. They achieved linear time by incorporating several other

techniques, including the pre computation of answers to small sub problems. Buchs-

baum et al. [28] gave a simpler algorithm in 1998, its corrigendum is appeared later in

†Please refer the appendix section A.2.2 for the details of Ackermann function
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2005. One year after in 1999, Alstrup et al. [14] presented a linear-time algorithm for

the random-access model of computation. After that in 2004, Georgiadis and Tarjan

[67] proposed a linear-time algorithm for pointer machine computation model. Again

in 2008, Buchsbaum et al. [29] proposed a new algorithm, where they replace random-

access table look-up by a radix sort, and partitioning a tree. The genesis of their algo-

rithm was the discovery of a subtle error in the analysis of a previous allegedly linear-

time algorithm for finding dominators and provides the systematic study.

In the recent years, Gabow [62] and Fraczak et al. [57] presented linear-time algo-

rithms, which are based on a different approach, and require only the simple data struc-

tures and a data structure for static tree set union [64]. Gabow’s algorithm uses the

concept of minimalset posets defined in [59, 63], while the algorithm of Fraczak et al.

[57] uses vertex contractions. The linear-time algorithms, proposed in [14, 28, 57, 62]

use bit-manipulation techniques, so they run on the random-access-machine‡(RAM)

model of computation. Nevertheless, the algorithms presented in [30, 67] are imple-

mentable on less powerful pointer-machine model§[163].

In addition, Ramalingam and Reps [141] proposed an incremental algorithm for finding

dominators in an acyclic graph. Their algorithm uses a data structure that computes

nearest common ancestors in a tree that grows by leaf additions. (More on [13], [140].)

To overcome the incremental nearest common ancestors problem, Gabow [58] and Al-

strup and Thorup [12] give the O(m)- time RAM algorithm and O(m log(logn))-time

pointer machine algorithm respectively. Ramalingam [140] showed a way to reduce

the problem of computing dominators in an arbitrary flow graph to computing domina-

tors in an acyclic graph. The reduction process uses static-tree disjoint set union, that

leads to run it in in O(mα(m,n)) time on a pointer machine [160], and in O(m) time

on a RAM [59]. Therefore, the combination of any linear-time algorithm that computes

the dominators in an acyclic graph with Ramalingam’s reduction produce a linear-time

RAM algorithm to compute the dominators of a graph.

‡For the details of Random Access Machine Model, please see Appendix Section A.3.1
§The Appendix Section A.3.2 contains the note for Pointer Access Machine Model
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Selection: As we explained in development section, many algorithms are available

to compute the dominators. It is very difficult to say which one is better among them

because the efficiency not only depends on the running time and storage space but also

on the graph structure. Theoritical and experimental comparision of these algorithms

has been carried out [28, 40, 70, 106].

Lengauer and Tarjan found the O(mα(m,n))-time version of their algorithm (LT) to

be faster than the simple O(m logn) version (SLT) even for small graphs [106]. They

also showed that the Purdom-Moore [136] algorithm gives better result only if the

graphs has less than 20 vertices. Moreover, in their experimental observation results

they also show that, a bit-vector implementation of the iterative algorithm, by Aho and

Ullman [4], is 2.5 times slower than the LT for graphs that has more than 100 vertices.

Buchsbaum et al. [28] reported that their claimed linear-time algorithm has low

constants, being only about 10% to 20% slower than their implementation of LT for

graphs with more than 300 vertices. Nevertheless, this algorithm was later shown to

have the same time complexity as LT [67]. The corrected linear-time version of [28]

is more complicated (refer to the Corrigendum). Cooper et al. [40] presented a clever

tree-based space- and time-efficient implementation of the iterative algorithm, which

they claimed to be 2.5 times faster than SLT. However, a careful implementation of SLT

later led to different results [39].

Georgiadis et al. [70] presented an experimental study that compares the algorithm

proposed by Cooper et al. [40] (and some variants) with careful implementations of

both versions of the Lengauer-Tarjan algorithm and with a new hybrid algorithm. The

results suggest that, although the performance of all the algorithms is similar, the most

consistent and fast algorithms are the Simple Lengauer -Tarjan Algorithm and the hy-

brid algorithm, and their advantage is directly proportional to the graph’s size and struc-

ture. The idea behind the Lengauer-Tarjan algorithm is to find the minima of a function

defined on the paths of a depth-first search spanning tree of the graph [162]. This can

be achieved efficiently by using the data structure, which support the link and eval oper-

ation. The link eval technique resemble the unite and find operation of a disjoining set
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union data structure [160] but involve a more elegant use of path compression and tree

balancing. The algorithm runs in O(m log(m/n+1) n) and O(mα(m,n)) time bound with a

simple linking and complicated balanced linking strategy respectively. Therefore, after

reviewing the existing algorithms, their complexity and available experimental obser-

vation reports, we decided to use the SLT for our analysis. In the following sections,

we will give a high level overview and the pseudocode of the Iterative, LT and SLT

algorithms.

Common Notations. Let allow us to introduce some notions before we explain the

algorithms. The immediate dominator of a vertex v 6= r (root vertex), denoted by

idom(v), is the unique vertex u 6= v that dominates v and is dominated by all vertices

in {Dom(v)-v} (root vertex has no immediate dominator). The (immediate) dominator

tree is a directed tree I rooted at r and formed by the edges {(idom(v),v)|v ∈ {V − r}}.

A vertex u dominates v ⇐⇒ u ∗−→ v in I, so computing the immediate dominators

is enough to determine all dominance information. Similarly, for any directed graph

G = (V,E), we say that v is a successor of u (and that u is a predecessor of v). The

set of all successors of v is denoted by succ(v) and the set of all predecessors of v is

denoted by pred(v). Also, for any subset S ⊆ V and a tree T , NCA(T,U) denotes the

nearest common ancestor (in some paper, it also known as a lowest common ancestor

LCA) of U ∩T in T .

3.5.3.1 Iterative Algorithms

There exist two different types of iterative algorithm. We are going to explain their

structures as following.

i. Data-flow Equation, Boolean Vector In 1970, Allen [9] defined the computation

of dominance relations by a data-flow equation 3.3. The equation provides a procedure

that finds the dominators in an interval. An interval is the maximal single entry sub-

graph, where all cycles in the subgraph contain the entry vertex. An entry vertex v is a
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vertex in the program control flow graph C, if it contains a program entry point.

∀v ∈V (G) : Dom′(v) =

 ⋂
u∈pred(v)

Dom′(u)

∪{v} �
 �	3.3

Allen and Cocke [8] in 1972 came up with the idea that one can solve this equation

iteratively. Hence, to find the dominators in a directed graph we start by initializing

Dom′(r) = {r} and Dom′(v) = V (G) for v 6= r, and then apply the following steps re-

peatedly: Find a vertex v such that the equation 3.3 is false and replace Dom′(v) by the

expression on the right side of the equation 3.3.

Algorithm 1: Boolean Vector

Input: A strongly connected digraph G = (V,E), root vertex r
Output: Dominator set for each vertex

1 Dom′(r)←{r}
2 while changes occured in any Dom′(v) do
3 for v ∈ {V-{r}} do

4 Dom′(v)←

 ⋂
u∈pred(v)

Dom′(u)

∪{v}

A näive way to perform this iteration is to cycle repeatedly through all the vertices of

V until no Dom′(v) changes. It is not necessary to initialize all the sets Dom′(v); rather

suffices to initialize Dom′(r) = {r} and exclude uninitialized sets from the intersection

in 3.3. If it is uninitialized, then an iterative step will be applied to a vertex v only if a

value has been computed for at least one u ∈ pred(v). It is also possible to initialize the

sets Dom′(v) more accurately. In addition, the Dom′(v) can be represented as a boolean

vector of size |V (G)|. The entry value of w in the boolean vector for vertex v is true if

vertex w dominates v. Otherwise w does not dominate v and entry value is false (see in

Algorithm 1).

ii. Tree Base Iterative Algorithm Cooper [39] significantly improved the efficiency

of this algorithm complexity for memory space and running time in practice. They

observed that dominator set Dom′(v) for a given vertex v can be represented as a list of
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immediate dominators idom(v) such that:

Dom′(v) = {{v} ∪ idom(v) ∪ idom(idom(v)) ∪ idom(idom . . .(v))}

Algorithm 2: Tree Base Iterative Algorithm

Input: A strongly connected digraph G = (V,E), root vertex r
Output: Dominator tree

1 Create any tree T as subgraph of G rooted at r
2 while changes occured in T do
3 for v ∈V do
4 for v ∈V do
5 if u 6= parentT (v) and parentT (v) 6= NCA(u, parentT (v)) then
6 parentT (v)← NCA(u, parentT (v))

Since there is an edge from the idom(v) to v, we can represent this data structure in

the dominator tree. Cooper [39] also provide the pseudocode implementation (we refer

the reader to [70] for a better explanation, nevertheless, the algorithm is incorporated in

Algorithm 2). The idea behind this technique is: we can represent all sets of Dom′(v)

by a single tree and perform an iterative step as an update of the tree. We can start the

process with any tree T and root vertex r, that is a subgraph of G and repeat the step

given below till it will no longer applies:

Find a vertex v such that

pred(v)∩T 6= /0 and parentT (v) 6= NCA(T, pred(v)),

replace parentT (v) by NCA(T, pred(v)).

The relation between this algorithm and the original algorithm is as follwoing. For

each vertex v ∈ T (v), Dom′(v) is the set of ancestors of v in T . The common vertices

between Dom′(u) and Dom′(v) is the set of ancestors of NCA(T,{u,v}) in T . Therefore,

once the iteration stops, the current tree T will became the dominator tree I. Georgiadis

et al. [70] explained that one can also perform the iteration not only through vertex-by-

vertex but also through arc-by-arc.
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3.5.3.2 Lengauer-Tarjan Algorithm

The algorithm introduced a new term in dominance relation called semidominators.

Afterward, the main computation of the algorithm followed the link-eval data structure,

introduced by Tarjan [162].

Semidominator A semidominator is an ancestor of a vertex v in a DFS tree D of

graph G = (V,E) that gives an initial approximation to immediate dominator (or idom)

of v. A semidominator (or sdom) of a vertex v (denoted by semi(v)) is the smallest

starting vertex in a semidominator path. Any path P = (u = v0,v1, . . . ,vk−1,vk = v) in

G become a semidominator path if vi > v for 1 ≤ i ≤ k-1. The semidominator of v is

defined as

semi(v) = min{u | there is a semidominator path from u to v}

There is a relation between any vertex v 6= r to idom(v) and semi(v) in the following

way.

idom(v) ∗−→ semi(v) +−→ v.

Lengauer and Tarjan [106] showed that, for any vertex w 6= r, we can compute the

semidominators and immediate dominators by finding minimum semi values on paths

of D,

semi(w) = min{Sw(v) |v ∈ pred(w)}
�
 �	3.4

where the function Sw(v): pred(w) 7→V is defined as

Sw(v) =

v, v≤ w

min
{

semi(u) |NCA(D,{v,w}) +−→ u ∗−→ v
}
, v > w

The immediate dominator can be found similarly, by evaluating the function: Rd(v):V-{r} 7→

V , defined by

Rd(v) = arg min
{

semi(v) |semi(v) +−→ u ∗−→ v
}

idom(v) =

{
semi(v), if semi(v) = semi(Rd(v))

idom(Rd(v)), Otherwise

�
 �	3.5
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link-eval data structure The link eval data structure is defined by Tarjan [162] as fol-

lowing. Let us suppose a tree T has been constructed from the graph G = (V,E). Then

for each v ∈V , the link-eval data structure maintains a forest F , which is a subgraph of

T and subjected to the operations given below.

link(v,w): Add edge (v,w) to F . This makes v the parent of w in F .

eval(v): If v = rootF(v), return v. Otherwise, return any vertex of minimum value

among the vertices u that satisfy the condition rootF(v)
+−→F u ∗−→F v, where the

notation u ∗−→F v (resp., u +−→F v) denotes the u is an ancestor (resp., proper ances-

tor) of v in forest F .

Procedure EVAL-SIMPLE(v)

1 if ancestor(v) = 0 then
2 return v

3 else
4 COMPRESS(v)
5 return label(v)

Tarjan [162] provided the detail description to implement the simple and sophis-

ticated way of LINK and EVAL data structure. To calculate the EVAL, simple method

uses the path compression and two arrays, ancestor and label for the representation of

forest F which is build by LINK operation. Initially, for each v ∈ V , ancestor(v) = 0

and label(v) = v. In general, if v is a root of any tree in F then ancestor(v) = 0. The

algorithm maintains the label(v) so that they satisfy the given property. Let v be any

vertex, r be the root of the tree in F that contain v, and let r = v0,v1, . . .vk−1,vk = v

be such that ancestor(vi) = vi−1 for 1 ≤ i ≤ k. Let u be a vertex such that semi(u) is

minimum among the vertices u ∈ {label(vi) |1≤ i≤ k}, then

u is a vertex such that semi(u) is minimum among vertices u satisfying r +−→ u ∗−→ v.�
 �	3.6

The algorithm assigns ancestor(w) = v to perform the LINK(v,w) operation. To calcu-

late the EVAL(v), it follows ancestor pointers to determine the sequence r = v0,v1, . . .

70



3.5. Dominators

Procedure EVAL-ADVANCED(v)

1 if ancestor(v) = 0 then
2 return label(v)

3 else
4 COMPRESS(v)
5 if semi(label(ancestor(v)))≥ semi(label(v)) then
6 return label(v)

7 else
8 return label(ancestor(v))

vk−1,vk = v such that ancestor(vi) = vi− 1 for 1 ≤ i ≤ k. If v = r then v is returned.

Otherwise, it will start the path compression process by assigning ancestor(vi) = r for

2 ≤ i ≤ k and simultaneously update the labels to maintain the equation 3.6 as given

in procedure EVAL-SIMPLE which is taken from [162]. With this simpler implemen-

tation, time require for (n− 1) LINKs and (m+ n− 1) EVALs is O(m logn) (for more

details, please refer on [162]).

The advance version uses path compression to calculate EVAL(v) but implements

the LINK instruction. The path compression is carried out only on balanced trees as

shown in procedure EVAL-ADVANCED, adapted from [162]. This technique requires

two additional arrays, size and child. Initially, ∀v ∈ V , size(v) = 1 and child(v) = 0.

With this version of implementation, the time required for (n−1) LINKs and (m+n−1)

EVALs is O(mα(m,n)), where α is the functional inverse of Ackerman’s function.

Procedure COMPRESS(v)

1 if ancestor(v) = 0 then
2 return

3 COMPRESS(ancestor(v))
4 if semi(label(ancestor(v)))< semi(label(v)) then
5 label(v) = label(ancestor(v))

6 ancestor(v) = ancestor(ancestor(v))

Process In general, Lengauer-Tarjan Algorithm follows the steps given below.
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Procedure LINK(v,w)
/* this procedure assumes for convenience size(0) = label(0) = semi(0) = 0 */

1 s = w
2 while semi(label(w))< semi(label(child(s))) do
3 if (size(s)+size(child(child(s))))≥ (2∗ size(size(child(s)))) then
4 parent(child(s)) = s
5 child(s) = child(child(s))

6 else
7 size(child(s)) = size(s)
8 s = parent(s) = child(s)

9 label(s) = label(w)
10 size(v) = size(v)+ size(w)
11 if size(v)< 2∗ size(w) then
12 s = child(v)

13 while s 6= 0 do
14 parent(s) = v
15 s = child(s)

1. Perform the DFS on graph G and assign the preorder number to each vertex.

2. Compute sdom of all vertices by applying the equation 3.4 in reverse preorder.

3. Implicitly define the idom of each vertex by using the equation 3.5.

4. Explicitly define the idom of each vertex in forward preorder number.

Now, we are going to explain the steps in details, expanded by Algorithm 3, which

is taken from [106]. The algorithm starts from the depth-first search on G from the root

vertex r. We already explain in section 3.3, during the DFS, each vertex get its corre-

sponding preorder number. The parent of each vertex in a DFS tree D can be represent

by an array parent. If the vertex v has a lower preorder number than vertex u, then we

denote their relation by v < u. Initially, it has T = D, and for each v ∈V, value(v) = v.

After processed the first time, value(v) = semi(v). Each vertex w has to be processed

three times. The first time, it executed the eval(u) for each u ∈ pred(w) to compute

the semi(w) and then Sw(u). In the second process, link(w,semi(w)) is performed by

inserting the w into a bucket associated with vertex semi(w). In the third round, it

again processes the w after semi(v) has been computed, where v satisfies the condition
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parent[v] = semi(w) and v ∗−→ w; at this time it performs the operation eval(w), thus

computing Rd(w). Then, immediate dominators are derived from relative dominators in

a preorder pass.

Implementation issues. Georgiadis et al. [70] remarked some implementation issues

for the Lengauer and Tarjan Algorithm. During the implementation of our analysis, we

also consider their remarks as following.

The algorithm process the bucket(parent(w)) at the end of the iteration that deals

with w; hence the same bucket may be processed several times. A better alternative is

to process the bucket(w) at the beginning of the iteration that deals with w; each bucket

is now processed exactly once, so it need not be emptied explicitly.

They observe that buckets have very specific properties: (1) every vertex is inserted

into at most one bucket; (2) there is exactly one bucket associated with each vertex;

(3) vertex i can only be inserted into some bucket after bucket i itself is processed.

Properties (1) and (2) ensure that buckets can be implemented with two n−sized arrays,

f irst and next: f irst(i) represents the first element in bucket i, and next(v) is the element

that succeeds v in the bucket it belongs to. Property (3) ensures that these two arrays

can actually be combined into a single array bucket. They also remarked an another

measure that is relevant in practice to avoid the unnecessary bucket insertions: a vertex

w for which parent(w) = semi(w) is not inserted into any bucket because we already

know that idom(w) = parent(w). Also, we note that the last bucket to be processed is

the one associated with the root r. For all vertices v in this bucket, we just need to set

idom(v)← r; there is no need to call EVAL for them.

3.5.4 Relation to Strong Articulation Points and Strong Bridges

Several relations can be defined between the strong articulation points (resp., strong

bridges) and vertex (resp., edge) dominator tree. In particular, Italiano et al. [88] ex-

plored this type of connections through the following lemmata. Furthermore, they pro-

vide the algorithms to compute the strong articulation points and the strong bridges in
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Algorithm 3: Lengauer-Tarjan Algorithm

Input: A strongly connected digraph G = (V,E), root vertex r
Output: An array which contains the parent of a vertex in dominator tree
/* step 1, create the DFS tree and initialize the basic variables */

1 n = 0
2 foreach v ∈V do
3 pred[v] = /0

4 semi(v) = 0

5 DFS-LT(r)
/* process the vertices in reverse preorder */

6 for i← n to 2 /* n is the highest preorder number */

7 do
8 w = vertex(i)

/* step 2, calculate the semidominator of w by equation 3.4 */

9 foreach v ∈ pred[w] do
10 u =EVAL-SIMPLE(v) /* use EVAL-ADVANCE(v) for sophisticated

version */

11 if semi(u)< semi(w) then
12 semi(w) = semi(u)

13 add w to bucket(vertex(semi(w)))
/* LINK(parent(w),w) is only for sophisticated version */

14 LINK(parent(w),w)
/* step 3, implicitly find the immediate dominator of w by equation 3.5

*/

15 foreach v ∈ bucket(parent(w)) do
16 delete v from bucket(parent(w))
17 u = EVAL-SIMPLE(v) /* use EVAL-ADVANCE(v) for sophisticated

version */

18 if semi(u)< semi(v) then
19 idom(v) = u

20 else
21 idom(v) = parent(w)

/* step 4, calculate the immediate dominator explicitly */

22 for i← 2 to n do
23 w = vertex(i)
24 if idom(w) 6= vertex(semi(w)) then
25 idom(w) = idom(idom(w))

26 idom(r) = 0
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Procedure DFS-LT(v)

1 semi(v) = n = n+1
2 vertex(n) = v
3 foreach (v,w) ∈ E(G) do
4 if semi(w) = 0 then
5 parent(w) = v
6 DFS(w)

7 add v to pred[w]

linear time (Algorithm 4 and Algorithm 5 respectively).

Lemma 3.5.1. (Italiano et al. [88]) Let G(V,E) is a strongly connected graph, and let

Gs be a flow-graph with start vertex s. If u is a non-trivial dominator of a vertex v in

Gs, then u is a SAP in G .

Proof. Let G(V,E) a strongly connected graph, Gs be a flow-graph of G with start

vertex s and u is a non-trivial dominator of v in Gs =⇒ all the paths from s to v in G

must include u =⇒ G\{u} is not strongly connected =⇒ u must be a SAP in G.

Lemma 3.5.2. (Italiano et al. [88]) Let G(V,E) strongly connected graph. If a vertex u

is a SAP in a G, then there should be the vertices s,v ∈V such that u is the non-trivial

dominator of v in the flow graph Gs with start vertex s.

Proof. Let G(V,E) strongly connected graph and u is a SAP in G, then by Lemma

3.5.1, there must be two distinct vertices s 6= u, v 6= u, such that every path from s to

v contains u. Hence u must be a non-trivial dominator of vertex v in the flow graph

Gs.

Lemma 3.5.3. (Italiano et al. [88]) Let G(V,E) be a strongly connected graph, and let

s be any vertex in G. Let Gs be the flow-graph with start vertex s. If (u,v) is an edge

dominator in Gs, then (u,v) is a strong bridge in G.

Proof. It is completely analogous to Lemma 3.5.1
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Algorithm 4: Find All Strong Articulation Points

Input: A strongly connected graph G(V,E), with n vertices and m edges.
Output: Strong Articulation Points of G.

1 Choose arbitrarily a vertex s ∈V in G(V,E), and test whether s is a strong
articulation point in G or not. If s is an articulation point, output s.

2 Compute Ds, the set of non-trivial vertex dominators in the flow graph rooted at
s, Gs.

3 Compute the reversal graph GR = (V,ER).
4 Compute DR

s , the set of non-trivial vertex dominators in the reverse flow graph
rooted at s, GR

s .
5 Output Ds∪DR

s .

Algorithm 5: Find All Strong Bridges

Input: A strongly connected graph G(V,E), with n vertices and m edges.
Output: Strong bridges of G.

1 Choose arbitrarily a vertex s ∈V in G(V,E).
2 Compute Ds, the set of edge dominators in the flow graph rooted at s, Gs.
3 Compute the reversal graph GR = (V,ER).
4 Compute DR

s , the set of edge dominators in the reverse flow graph rooted at s, GR
s .

5 Output the union of edges in Ds and reversal of the edges in DR
s , Ds∪DR

s .

Lemma 3.5.4. (Italiano et al. [88]) Let G(V,E) be a strongly connected graph. If (u,v)

is a strong bridge in G, then there must be a vertex s ∈ V such that (u,v) is an edge

dominator in the flow-graph Gs.

Proof. It is similar with Lemma 3.5.2

3.6 The Loop Nesting Forest

3.6.1 Introduction

The Loop Nesting Forest of a flow graph Gs is a hierarchical representation of strongly

connected subgraphs of G. Several different ways are available to define such a forest

[81, 106, 140, 148, 149, 156]. In our analysis we follow the process which was first

presented by Tarjan [156] and later rediscovered by Havlak [81]. It is defined with

respect to a depth-first spanning tree T of G rooted at s as follows. For any vertex
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Figure 3.7: A flow graph Gs with a depth-first spanning tree T shown with solid arcs;
non-tree arcs are shown dashed; vertices are numbered in reverse postorder (in brack-
ets). The corresponding digraph G is not strongly connected. Loop nesting forest H of
G with respect to T .

v, the loop of v, denoted by loop(v), is the set of all descendants x of v in T such

that there is a path from x to v containing only descendants of v in T . Vertex v is

the head of loop(v). Any two vertices in loop(v) are mutually reachable. Therefore

loop(v) induces a strongly connected subgraph of G; which is the unique maximal set

of descendants of v in T . For any two vertices u and v, loop(u) and loop(v) are either

disjoint or nested (i.e., one contains another). We can extend this property to define

a loop nesting forest H of G, with respect to T , as a forest, in which, parent of any

vertex w is the nearest proper ancestor v of w in T such that w ∈ loop(v) if there is

such a vertex v, null otherwise. Then loop(v) is the set of all descendants of v in H

(see Figure 3.7). Since we only consider strongly connected graphs in our analysis and

hence we have a single tree in a loop nesting forest called Loop Nesting Tree. An entry

to loop(v) is an e = edge(w,z) such that z ∈ loop(v) and w /∈ loop(v). Since T is a

depth-first spanning tree, every cycle contains a back arc [154]. More precisely, every

cycle C contains a vertex v that is a common ancestor of all other vertices w on the cycle
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[154], which means that: any w ∈C is in loop(v). Thus, every cycle of G is contained

in a loop. A loop is reducible if all its entries enter its head. A flow graph is reducible

[82, 159] if all of its loops are reducible. If loop(v) is reducible, then v dominates all

vertices in the loop. A reducible flow graph Gs has the property such that if we delete

all of its backward edges with respect to any spanning tree, then it produces an acyclic

graph, which has the same dominators as flowgraph Gs [159].

3.6.2 Applications

Two fundamental tools in flow graphs are the loop nesting forests and the dominator

trees. We already provided many applications of dominator trees before. Loop nesting

forest gives the efficient algorithms for the following tasks: in dominator computation

[29] and its verification [68], in testing whether a graph is reducible or not and then

identify the reducible loops [139, 159]; in computing the bridges as well as in finding the

maximally edge-disjoint spanning trees [156]; in computing a low-high order which can

be used to construct the two independent spanning trees and then certify the dominator

tree of a flow graph [69]. Georgiadis et al. [77] provided a technique by which we can

use the loop nesting forests in order to get an efficient solutions to various problems

related to 2-vertex and 2-edge connectivity of a graph.

3.6.3 Algorithms

In 1976, Tarjan [161] presented an O(mα(n,m/n)) time pointer-machine algorithm to

compute a loop nesting forest by using the disjoint set union, here α is a functional

inverse of Ackermann function [160] ¶. Later on in 1985, Gabow’s and Tarjan’s static

tree disjoint set union algorithm [64] reduces the running time of this algorithm to O(m)

on a random access model||. In Recent year, Buchsbaum et al. [30] gave an O(m)-time

pointer-machine algorithm ** in 2008, which is also called the streamlined version of

Tarjan’s algorithm. It also has the same asymptotic behavior but needs less storage

¶Please refer the appendix section A.2.2 for the details of Ackermann function
||To see the description of random access model, please refer the the Appendix section A.3.1

**Appendix section A.3.2 contains the details of pointer machine model
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space. Georgiadis et al. [77] provides the first experimental study of Tarjan’s loop

nesting forest algorithm, and the first implementation of its streamlined version.

3.6.3.1 Tarjan’s Algorithm

Tarjan’s algorithm [161] is based on contraction and intervals. Let us introduce some

terminology, which will help us to explain the algorithm. Suppose T is a depth-first

spanning tree, rooted at vertex s.

Contraction. Please refer Chapter 2, section 2.1.4.

Reducibility. Let consider the following two sets.

C(w): { v |(v,w) is a cycle arc in T }, and

I(w): { v |w ∗−→ v and ∃z ∈ C(w) , such that ∃ a path from v to z which contains only

descendants of w in T .

Then, it is trivial that the subgraph of G induced by the vertices of I(w) is strongly

connected. Let imagine that we compute the I(n) in G = G(n) and contract I(n)−{n}

into n and created a new graph G(n− 1). Again, compute the I(n− 1) in G(n− 1)

and contract I(n−1)−{n−1} into {n−1} and created a new graph G(n−2), and so

on, until we reach to root vertex. Gradually G will be contracted into an acyclic graph

G(0) whose vertices correspond to the maximal strongly connected subgraph of G. This

technique, presented in Tarjan [155], gives an efficient way to test the reducibility of G

and find a pair of edge-disjoint spanning trees given by Tarjan [159].

Interval. Without loss of generality, we can assume that the root vertex (= 1) has

no incoming edges. Let I(k) be defined in G(k) for 2 ≤ k ≤ n. Then the set I(k)−

{k} partition the set {i |2 ≤ i ≤ n}. Therefore, the set I(k) is known as an interval.

Furthermore, the graph TI = {{1≤ i≤ n},{(h(i), i) |2≤ i≤ n}} is a tree, where h(i) is

the header or parent of i, called the interval tree (also called the loop nesting tree) of G.

In other words, if T is a depth-first spanning tree of G, and H is the corresponding loop

nesting forest, then for any vertex v ∈ V , the interval of v is defined by, I(v) = {v}∪{

children of v in H} and the tree rooted at v, called the interval tree (or loop nesting tree)
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of G.

Process. To compute intervals, Tarjan’s algorithm modifies the existing algorithm that

tests the reducibility of the flow graphs presented in [155] and systematically computes

the sets I(w) by using a backward search from the vertices in C(w). To represent the sets

I(w) and to contracts the graphs G(n),G(n− t) . . .G(1), it uses the disjoint set union

method [86, 160]. Similarly, to restrict the backward searches within the vertices of

C(w), it uses the lowest (or nearest) common ancestor of v and w, denoted by LCA(v,w)

(or NCA(v,w)) as following. For any edge (v,w), find a vertex x such that x ∗−→ v,

x ∗−→ w in T , and for any vertex y satisfying y ∗−→ v, y ∗−→ w also satisfies y ∗−→ x. Aho

et al. [6] provides an algorithm to compute the LCA(v,w) for each edge (v,w) that uses

depth first search and the set union method available in [86, 160]. The complexity of

LCA algorithm is O(m,α(m,n)) [160], where α(m,n) is a very slowly growing function

related to a functional inverse of Ackermann’s function. The Algorithm 6 contains the

detail the steps that computes h(k) for all k > 1 and I(i) for all i, which is taken from

[161].

Explanation. The algorithm computes H by contracting intervals, as following. At

first, it numbers the vertices from 1 to n in reverse postorder of T and identifies vertices

by number. Note that, the vertex numbers correspond to a reverse postorder numbering

of G (hence 1 is the start vertex). After that it process the vertices in increasing order.

(Indeed, any bottom-up order of T will do.) If vertex v is processed then it computes

the interval I(v) of v and then contract I(v)v into v as shown in Figure 3.8. For any

vertex v ∈ V , if G(v) is the resulting graph after contracting I(w) \w into w for all

vertices w > v, then I(v) is found by a backward search from v in G(v) that visits only

descendants of v in T . Graph G(v) is computed implicitly with the use of a disjoint

set union data structure available in [160], which achieves the effect of contractions.

As well as maintains a collection of disjoint sets, each with a name, and supports the

following operations:

make-set(x): Create a new set {x} with representative x. Element x must be in no
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Algorithm 6: LOOP NESTING FOREST TARJAN ORIGINAL

Input: A strongly connected digraph G = (V,E), root vertex r(= 1)
Output: Interval and parent ( or header) of each vertex
/* first pass */

1: procedure SEARCH(v)
h(v) = i
I(i) = I(i)∪{v}
UNION(i,v)
foreach (v,w) ∈ E(G) do
if FIND(w) 6= i and h(FIND(w)) = 1 then

SEARCH(FIND(w))

2: end procedure
/* second pass */

1 for i← 1 to n do
2 create a set {i} named i
3 h(i) = 1
4 I(i) = {i}
/* third pass */

// delete all cross edges and forward edges in T

5 for i← n to 2 do
6 foreach cross edge or forward edge (v,w) with LCA(v,w) = i do
7 add (v,FIND(w)) to E

8 foreach cycle edge (v, i) do
9 if h(FIND(v)) = 1 then

10 SEARCH(FIND(v))

11 for i← 2 to n do
12 if h(i) = 1 then
13 I(1) = I(1)∪{i}

existing set.

find(x): Return the representative element of the set containing element x.

unite(x,y): Unite the sets containing elements x and y and give the new set the repre-

sentative of the old set containing x.

The algorithm begins by executing the make-set(v) before processing the vertex v. To

contract I(v) into v, it executes the unite(v,w) for all vertices w that are visited during
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Figure 3.8: Loop nesting tree contraction example. A flow graph Gs with a depth-
first spanning tree T shown with solid arcs; non-tree arcs are shown dashed; vertices
are numbered in reverse postorder (in brackets). The corresponding digraph G is not
strongly connected.

the backward search from v. These operations create a set which contains exactly the

vertices in loop(v) and assign the set name v. In order to bound the running time of the

backward search from v, the algorithm need to avoid examining edges whose first end

is not a descendant of v in T . To accomplish this, it computes the set E(v) of each edges

(x,y) ∈ E such that v is the lowest common ancestor of x and y in T and (x,y) is not a

forward edge. (Actually, forward edge can be removed without affecting the resulting

loop nesting forest.) Aho et al. [6] explained that these computations can be performed

during the depth-first-search that generates T , yielding in a two-pass algorithm or in a

separate pass through the vertices, yielding in a three-pass algorithm. The algorithm

runs the backward search from v in a subgraph G′(v) of G(v). G′(v) has no edges

for v = n. For v < n, it construct the G′(v) from G′(v+ 1) as following. At first, it

contracts I(v+ 1){v+ 1} into v+ 1. Then for each edge (x,y) ∈ E(v), if y = v, then

(x,y) is a backward edge, and x is inserted into a set B, if y 6= v, then insert the edge

( f ind(x), f ind(y)) into G′(v+1). To compute I(v), pop up a vertex x from B until and

unless it will not be empty, but during the pop up, execute a backward search from x,

collect the vertices that have not been visited already and then for each such vertex w,
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assign h(w)← v and execute unite(v,w).

3.6.3.2 Streamlined Version

The streamlined version of Tarjan’s algorithm [30] computes a loop nesting forest by a

single depth-first-search, which also produces T , but avoids the computation of lowest

common ancestors and requires less storage space. To perform the backward search, it

maintains the incoming arcs of each vertex w by in(w). At the beginning, it initializes

all in− sets to be empty. When a vertex v is visited at the first time during the depth-

first search, insert v into in( f ind(w)) for each backward or cross edge (v,w). Then, we

can get the interval of v as following. When v is visited in postorder, and in(v) is not

empty, then remove a vertex x from in(v) and compute w← f ind(x). Then, while w 6=

v, compute in(v)← in(v)∪ in(w), execute unite(v,w), and set w← f ind(p(w)). The

in− sets can be represented by singly-linked circular lists, so that insertions, deletions,

and unions can be done in O(1) time. Thus, the streamlined algorithm has the same

asymptotic running time, O(mα(n,m/n)), as original version.

3.6.3.3 Memory Efficient Version

We modify the streamline version of the Tarjan’s algorithm by the following observa-

tion. Every insertion of v into a in(find(w)) list, done during the first DFS visit to v,

indicates that v has a path to find(w) using only descendants of w in T , and therefore,

a backward search is triggered when v will be found in the list of find(w). However, if

another back or cross edge (z,w) was already inserted in the list in(find(w)), such that

z is a descendant of v in T , then the backward search (using the edges indicated from

the vertices in the list in(find(w))) from the vertex find(w) will also visit v. Thus, in

this case we can avoid inserting vertex v into in(find(w)) if we have an efficient way to

test if there exists a descendant of v that has a cross or back edge to a vertex z, where

find(z) = find(w). We can implement a simple test that discovers such cases, as follows.

For each vertex v, we keep a variable last[v] that stores the last vertex that was inserted

into in(v). We also change the order in which vertices are inserted into the in lists.
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Figure 3.9: Running times in µs per edge to form the loop nesting tree by the original 1
pass algorithm and the memory efficient algorithm. Data are given in Table 3.1. (Better
viewed in color.)

Instead of doing the insertions of v in preorder, we do them in postorder, we just start

the backward search from v. In this way, when v is visited in postorder, the vertices that

were processed just before v are descendants of v in T . Hence, if such a descendant of

v has an outgoing cross of back edge to another vertex w, then this will be stored as the

last vertex that was inserted into in(find(w)); if another vertex was inserted later into

in(find(w)) it will be again a descendant of w. This allows us to reduce the total number

of elements that are inserted into the in lists and hence uses the less memory storage for

the computation.

We implemented both the streamline and the memory version of the algorithms to

compute the loop nesting forest of a given directed graph G = (V,E). We use the same

data structure to represent the graph and for the computations. After that, we did the

experimental observations to know their difference in running time. For the analytical

observation, we created the random graphs with a fixed number of vertices (100K) and

edge to vertex ratio (density) in a range that spans from 11 to 536. Figure 3.9 plots the

experimental reports of their running time, data are presented in Table 3.1. It showed

that, if the graph density is increasing then the memory efficient version pays off its

performance over the streamline version.
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Graph Vertices Edges original algorithm memory efficient algorithm

Rand-11D 100K 1.1M 0.068 0.068

Rand-17D 100K 1.7M 0.080 0.072

Rand-23D 100K 2.3M 0.116 0.092

Rand-33D 100K 3.3M 0.152 0.108

Rand-39D 100K 3.9M 0.184 0.116

Rand-45D 100K 4.5M 0.216 0.128

Rand-54D 100K 5.4M 0.256 0.132

Rand-60D 100K 6.0M 0.292 0.156

Rand-66D 100K 6.6M 0.316 0.168

Rand-75D 100K 7.5M 0.356 0.180

Rand-109D 100K 10.9M 0.524 0.228

Rand-145D 100K 14.5M 0.700 0.296

Rand-182D 100K 18.2M 0.916 0.336

Rand-216D 100K 21.6M 1.084 0.392

Rand-252D 100K 25.2M 1.232 0.440

Rand-286D 100K 28.6M 1.424 0.500

Rand-322D 100K 32.2M 1.612 0.544

Rand-359D 100K 35.9M 1.812 0.628

Rand-393D 100K 39.3M 1.952 0.688

Rand-429D 100K 42.9M 2.144 0.712

Rand-466D 100K 46.6M 2.372 0.788

Rand-499D 100K 49.9M 2.568 0.852

Rand-536D 100K 53.6M 2.700 0.908

Table 3.1: Running time comparison between original algorithm and memory efficient
algorithm, to create the loop nesting forest, time are in seconds. We keep fixed the
number of vertices to 100K while we increase the edge density value.
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4
2-Edge-Connected Blocks

4.1 Introduction

Let us recall the definition of 2-edge-connected blocks (2ECB) from Chapter 2. Given a

digraph G = (V,E), we say that two vertices u,v ∈V are 2-edge-connected, and denote

this relation by u↔2e v, if there are two edge-disjoint directed paths from u to v and two

edge-disjoint directed paths from v to u. Note that, the paths from u to v and the paths

from v to u need not be edge-disjoint. Moreover, two paths from u to v or two paths

from v to u can share the vertices. Menger’s Theorem [121]* also states the equivalent

𝑎

𝑑

𝑖

ℎ

𝑔

𝑓

𝑒

𝑐
𝑏

Figure 4.1: Example of 2-edge connected blocks, the vertices {a,b,c} are in
same 2ECB, but the paths from a to b ({a, f ,c,d,b},{a,g,c,e,b}) and b to a
({b,h,c,d,a},{b, i,c,e,a}) share the edges (c,d) and (c,e), as well as contain the ver-
tices d,e, f ,g,h, which are not in the same 2ECB. Also two edge-disjoint path between
the vertex a and b share the vertex c. (Better viewed in color.)

defintion of the 2-edge-connected relation in a graph as follows: Two vertices u and v

in G are 2-edge-connected, if and only if the removal of any edge from G, leaves them

in the same strongly connected component. If G is 2-edge-connected, then it does not

contain any strong bridge. A 2ECB of a digraph G = (V,E) is defined as a maximal

*To see the statement of Menger’s Theorem, please refer the Appendix A.2.1.
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Chapter 4. 2-Edge-Connected Blocks

subset B ⊆ V such that ∀u,v ∈ B, u↔2e v. Hence, if u,v be vertices of a 2ECB then

the paths of u↔2e v may contain the vertices that do not belong to the same 2ECB as

illustrates in Figure 4.1, where, the vertices a,b and c are in the same 2ECB. But two

paths from a to b and two paths from b to a share a vertex c. Also, the paths from a to b

({a, f ,c,d,b},{a,g,c,e,b}) and b to a ({b,h,c,d,a},{b, i,c,e,a}) share the edges (c,d)

and (c,e), as well as contain the vertices d,e, f ,g,h, which are not in the same 2ECB.

Furthermore, two distinct 2ECBs may have only one vertex in common that is going to

explain by following leema.

Lemma 4.1.1. Two different 2ECBs do not have any vertex in common.

Proof. We proceed by contradiction.

Let us consider that A and B be two different 2ECBs in a digraph G = (V,E), and

w ∈V (G) such that A∩B = w as illustrated in Figure 4.2.

𝑤

𝐴 𝐵

𝑢 𝑣

𝑃1

𝑃2

𝑃3

𝑃4

Figure 4.2: Maximum vertices between two different 2ECBs of digraph G = (V,E), A
and B have common vertices a and b. By definition, they are not 2ECBs because for
two distinct vertices x,y ∈ G; they are not the maximal subset of G such that x↔2e y.

Since w ∈ A =⇒ for each vertex u ∈ A\{a}, u↔2e w =⇒ there exist two distinct

edge-disjoint paths P1 and P2 that start from u and end at w. Similarly, w ∈ B =⇒ for
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each vertx v ∈ B\{a}, a↔2e v =⇒ there exist two distinct edge-disjoint paths P3 and

P4. Both paths are start from w and end at v.

Therefore, there exist two distinct edge-disjoint paths P1 = P1∪P3 (or P1∪P4) and

P2 = P2∪P4 (or P2∪P3) from any vertex u ∈ A to every vertex v ∈ B.

Analogously, we also have the two edge-disjoint paths from v to u as well. Then, by

the definition of 2ECB, i.e., a maximal subset B ⊆ V such that ∀u,v ∈ B, u↔2e v, and

here we find A and B are not maximal, so, they cannot be the 2ECBs, it is a contradiction.

Note: This lemma elaborates the relations between two different 2ECBs, which will

be helpful to explain the algorithms in next section.

4.2 Related Work

In 2014, Jaberi [89] presented an algorithm to compute the 2-edge-connected blocks

of any digraph G = (V,E) with O(n min{m,b∗n}) time complexity where b∗ is the

number of strong bridges in G. Nevertheless, it may have O(mn) time complexity

for the worst case graph, which has n− 1 strong bridges as shown in Figure 4.3. In

the same year 2014, Georgiadis et al. [71] proposed the three different algorithms for

the 2ECB computation of the digraph G. (i) A simple iterative algorithm with O(mn)

time complexity, (ii) recursive algorithm which also has O(mn) time complexity, and

(iii) fast algorithm with linear time bound O(m+n) that combine the iterative and the

recursive techniques. Georgiadis et al. [71] presented the Pioneer algorithm to compute

the 2-edge-connected blocks of a digraph in linear-time bound. That was the first real

progress on this extremely natural problem, starting from the foundational work done

40 years ago for undirected graphs. After one year, in 2015, Georgiadis et al. [73] again

presented an algorithm for 2ECB computation based on loop nesting tree and dominator

tree informations. On the basis of their algorithm, we also present a memory efficient

version algorithm to compute the 2ECBs. Our algorithm modifies the existing loop

nesting forest computation and produce the better performance for the dense graph,

which is already explained in Chapter 3 - Section 3.6.3.3.
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S

Y1Y3Y5Y7Y9Y11

X1X2X3X4X5X6

Y10 Y8 Y6 Y4 Y2

Figure 4.3: A strongly connected digraph with n vertices and greater than n bridges
where it causes k recursive calls of Recursive Algorithm, Vertices X1,X2, . . . ,Xk are
not 2-edge-connected, but Recursive Algorithm requires k recursive calls (in this case
k = 6) to separate them into different blocks. (Better viewed in color.)

There is only one experimental study is available for 2ECBs computation of the di-

graphs, which is done by Di Luigi et al. [44]. They compared the linear-time algorithms

[71] to the simple O(mn)-time algorithms. Their experimental results show that simple

algorithms are not competitive with the more sophisticated linear-time algorithms. Fur-

thermore, Di Luigi et al. [44] didn’t include the linear time algorithm that is presented in

[73]. We have done the comparative empirical analysis between all available linear time

algorithms. We did not include the algorithms of Jaberi [89] because of their extensive

requirements in storage space. Moreover, our key focus is to observe the running time

of linear time algorithms rather than other algorithms. In next sections, we will explain

the high-level idea of these algorithms and then report our experimental observation

later.

4.3 Algorithms

Before starting to explain the algorithms, let us define some common notions as fol-

lowing. Let Gs (resp., GR
s ) be the flow-graph of G (resp., GR) and let D ( resp., DR)
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4.3. Algorithms

denotes the dominator trees of flow-graph Gs (resp., GR
s ). Similarly, let Tu denotes the

tree rooted at u and T (v) tells the tree contains the vertex v. Also, let the symbol [v]2e

represent a 2-edge-connected block contains the vertex v ∈V (G).

4.3.1 Simpler Algorithm

If the graph does not have any strong bridges, then it will be 2-edge-connected. There-

fore, for every strong bridge e, we can obtain the 2-edge-connected blocks of G= (V,E)

by computing the strongly connected components of G\ e. A strong bridge e separates

the distinct vertices u and v, if all paths from u to v contain an edge e or all the paths

from v to u contain an edge e. Hence, u and v must be lie in two different strongly

connected components of G\ e. This trivial observation gives a characterization of the

2ECB in terms of the strong bridges. The details steps of this process is available in

Algorithm- 7, which is taken from [71]. Since Italiano et al. [88] already proved that,

any digraph G = (V,E) may have maximum 2n−2 strong bridges, where n is the num-

ber of vertices, hence, Algorithm- 7 may have O(mn) time bound in the worst case

scenario.

Algorithm 7: Simpler

Input: A strongly connected digraph G = (V,E)
Output: 2-edge connected blocks of G

1 Initialize the 2-edge-connected blocks as [v]2e =V (start from the trivial partition
containing only one block).

2 Compute the strong bridges of G.
3 foreach strong bridge of e ∈ E(G) do
4 Compute the strongly connected components S1, . . . ,Sk of G\ e
5 Let {[v1]2e, . . . , [vl]2e} be the current 2-edge-connected blocks. Refine the

partition into blocks by computing the intersections [vi]2e∩S j for all
i = 1, . . . , l and j = 1, . . . ,k.

4.3.2 Recursive Algorithm

This algorithm is based on the bridge decomposition of the dominator trees and aux-

iliary graphs. Let us suppose a 2ECB, which has a specific vertex v, then any vertex
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Chapter 4. 2-Edge-Connected Blocks

w(6= v), will be in same 2ECB ⇐⇒ v↔2e w (i.e., there are two edge-disjoint path

from v to w and two edge-disjoint path from w to v). We can divide this computation

into two parts. Find the set of vertices [v]→2e that are 2-edge-connected from v and

calculate the set of vertices [v]←2e that are 2-edge-connected to v. Then, [v]2e is formed

by the intersection of these two sets [v]→2e and [v]←2e. To perform such computation

in an advance way, this algorithm uses the bridge decomposition and auxiliary graphs.

Algorithm 8: Recursive

Input: A strongly connected digraph G = (V,E)
Output: 2-edge-connected blocks of G

1 Choose an arbitrary ordinary vertex s ∈V o as a start vertex. Compute the
dominator trees D and DR and the bridges of the flow graphs Gs and GR

s .
2 Compute the number b of bridges (x,y) in Gs such that y is an ancestor of an

ordinary vertex in D. Compute the number bR of bridges (x,y) in GR
s such that y

is an ancestor of an ordinary vertex in DR.
3 if b = bR = 0 then
4 return [s]2e =V o

5 if bR > b then
6 swap Gs and GR

s

7 Find the bridge decomposition of D into the subtrees Tr and compute the
corresponding auxiliary graphs Gr. Compute recursively the 2ECB for each
auxiliary graph Gr with at least two ordinary vertices.

Let us consider the computation of [v]→2e. When we compute the vertex domi-

nator tree D, then we could easily identify the bridges of G. Since Italiano et al. [88]

proved that, bridges in flow graph are also bridges in Graph G. In addition, each bridge

e = (u,w) is also an edge in D such that e = (u = d(w),w). Therefore, let find all

such vertices w in D and marked them, after that, let us follow the concepts given by

following lemmas, which are taken from Georgiadis et al. [71].

Lemma 4.3.1 (Georgiadis et al. [71]). z ∈ [v]→2e⇐⇒ marked vertex does not domi-

nates z in Gs.

We can compute the [v]←2e by the same way, but we have to operate it in reverse

graph GR
s , and its dominator tree DR. Note that, a vertex marked in D may not be
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marked in DR and vice versa. However, the common set will be same that hinges by the

following lemma.

Lemma 4.3.2 (Georgiadis et al. [71]). z ∈ [v]2e ⇐⇒ any marked vertex does note

dominates z in Gs and in GR
s . Moreover, [v]2e can be computed in O(m) time.

According to Lemma 4.3.2, for a single vertex v, [v]2e takes O(m) times, which

implies that it will take O(mn) time for n vertices. Now, let describe it in sophisticated

way that avoids repeated computation of 4.3.2. However, it also has the O(mn) time

complexity, but will be a useful ingredient to explain the linear-time algorithm. Let

remove all edges (d(v),v) (resp., (dR(v),v)) such that v is marked in D (resp., DR). This

decomposes the dominator trees D (resp., DR) into forestF of rooted trees, where each

tree is rooted either at a marked vertex or at the start vertex s as shown in Figure 4.4

(c), known as a bridge decomposition of D (resp., DR) into many subtrees T (v) (resp.,

T R(v)). Then, we can proceed to the next step by using the following lemma, which is

taken from [71].

Lemma 4.3.3 (Georgiadis et al. [71]). If v and w are the distinct vertices in V (G), then

[v]2e = [w]2e ⇐⇒ T (v) = T (w) and T R(v) = T R(w).

Lemma 4.3.3 gives the the necessary but not sufficient condition for two distinct

vertices v and w to be 2-edge-connected. Because they may lie in the same subtree in

both bridge decompositions of D and of DR, which can be separated by a strong bridge.

To overcome this problem, it will use the parent property of dominator trees [69], and

structural properties for paths [71] that connect vertices in different subtrees that are

going to state below.

Lemma 4.3.4. (Parent property of the dominator tree [69].) ∀e = (v,w) ∈ E(G), d(w)

is an ancestor of v in D.

Lemma 4.3.5. (Structural property of a path in dominator tree [71].) Let e = (u,v) ∈

E(G) such that T (u) 6= T (v) and let rv be the root of T (v). Then either u = d(v) and e

is a bridge in Gs, or u is a proper descendant of rv in D.

93



Chapter 4. 2-Edge-Connected Blocks

Lemma 4.3.6. (Structural property of a path in dominator tree [71].) Let r be a marked

vertex in D and v be any vertex that is not a descendant of r in D. Then there is path

from v to r that does not contain any vertex in T (r)\ r. Moreover, all simple paths from

v to any vertex in T (r) contain the edge (d(r),r).
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Figure 4.4: (a) A flow graph Gs, (b) Dominator tree D of Gs, (c) Bridge decomposition
into the subtrees T (v) induced by the bridges of Gs, and (d) together with the auxiliary
graph of vertex E. Strong bridges of G and bridges of Gs are shown in red; marked
vertices are shown in light blue (Example is taken from [71] and better viewed in color.)

Auxiliary graphs. Auxiliary graphs were defined in [71], to decompose the input

digraph G into smaller digraphs (not necessarily subgraphs of G) that maintain the

original 2-edge-connected blocks of G. For each tree Tr ∈F , we construct an auxiliary

graph Gr = (Vr,Er) as follows. The vertex set of Gr consists of ordinary and boundary

vertices. All the vertices v∈ Tr are the ordinary vertices and v became a boundary vertex

in Vr if it has a marked child in D. Let w be a marked child of a boundary vertex v, then

contract all the descendants of w in D into w. Still, if there exist any vertices in V \Tr,

which are not the descendants of r (6= s) are contracted into d(r). In these contractions

process, all the parallel edges are eliminated, as you can see on Figure 4.4 (d) taken

from [71]. We can compute all auxiliary graphs Gr in O(m) time, and each auxiliary

graph is strongly connected. Thus, by using bridge decomposition and auxiliary graph,
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we can get the 2ECB of any digraph G = (V,E) in O(mn) time. The details steps are

shown in Algorithm 8, which is adapted from [71].

Algorithm 9: AUXE

Input: A strongly connected digraph G = (V,E)
Output: 2-edge-connected blocks of G

1 Choose an arbitrary ordinary vertex s ∈V as a start vertex. Compute the
dominator trees D and the bridges of the flow graphs Gs.

2 Partition D into subtrees Tr and compute the corresponding auxiliary graphs Gr.
3 foreach auxiliary graph H = Gr do
4 Compute the dominator tree DR

H and the bridges of HR. Let dR
H(q) be the

parent of q 6= r in DR
H .

5 Partition DH
R into the subtrees T R

H (q). Compute the corresponding auxiliary
graphs HR

q with q 6= r.
6 Set [r]2e to consist of the ordinary vertices in T R

H (r).
7 foreach auxiliary graph HR

q with q 6= r do
8 Compute the strongly connected components S1,S2, . . . ,Sk of

HR
q \ (dR

H(q),q).
9 Partition the ordinary vertices of Hq into blocks according to each

S j, j = 1, . . . ,k; For each ordinary vertex v, [v]2e contains the ordinary
vertices in the strongly connected component of v.

4.3.3 Linear Time Algorithm Through Auxiliary Graph

A careful integration of Simple and Recursive algorithm gives a linear time algorithm.

The critical observation shows that if a strong bridge separates different pairs of vertices

in successive recursive calls (which create the worst-case scenario for Recursive Algo-

rithm as shown in Figures 4.3), then it will appear as the strong bridge entering the root

of a subtree in the bridge decomposition of a dominator tree. Algorithm 9 described the

detailed steps of this combination that provide the linear time algorithm (see [71] for

the verification). We refer this algorithm as AUXE. The main idea is that it executes the

Recursive Algorithm but stops the recursion at the second level. Two vertices that are

not 2-edge-connected but have not been separated yet (i.e., they are ordinary vertices

of an auxiliary graph computed at recursion depth level 2) can be separated by running
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the Simpler Algorithm for the specific auxiliary graph. It suffices to remove only one

strong bridge of that particular auxiliary graph, and we can do that by executing the step

3 of the Simpler Algorithm.

Algorithm 10: LNFE

Input: A strongly connected digraph G = (V,E)
Output: 2-edge connected blocks of G
/* Initialization */

1 Choose an arbitrary vertex s ∈V as a start vertex. Compute the reverse graph GR

2 Compute the dominator trees D and DR of the flow graphs Gs and GR
s ,

respectively.
3 Compute the loop nesting trees H and HR of the flow graphs Gs and GR

s ,
respectively.

4 Compute F (the bridge decomposition of D) and D (the bridge decomposition of
DR).

5 foreach v ∈V do
6 Find the roots rv and rR

v in the bridge decomposition
7 Find the nearest boundary vertices hv and hR

v
8 Set label(v) = 〈rv,hv,rR

v ,h
R
v 〉

/* Computation of 2-edge-connected blocks */

9 Sort the tuples 〈label(v),v〉 lexicographically by their labels
10 Partition the vertices into blocks, where u,v ∈V are in the same block if and only

if label(u) = label(v)

4.3.4 Linear Time Algorithm Through Loop Nesting Tree and Dom-
inator Tree

Recently, Georgiadis et al. [73] presented new linear-time algorithms to compute the

2-edge-connected blocks, based on loop nesting trees. We refer to this algorithm as

LNFE. Along with the previous notations, let H (resp., HR) denotes the loop nesting

tree of the flow-graph Gs (resp., GR
s ). The algorithm assigns a label to each vertex v,

label(v) = 〈rv,hv,rR
v ,h

R
v 〉. Where rv (resp., rR

v ) is the root of the trees that contain v

in the bridge decompositions of D (resp., DR) respectively. Also, hv (resp., hR
v ) is the

nearest ancestor w of v in loop nesting tree H (resp., HR) such that h(w) ∈ Dw (resp.,

hR(w) ∈DR
w). The vertices that have identical label are in same 2-edge-connected block
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of G (proof is available in [73, page 32]). Details of the steps are presented in Algorithm

9 that is taken from [73].

4.3.5 Memory Efficient Version

We already explained in the Chapter-3, Section-3.6.3.3 that we can improve the memory

usage in loop nesting tree computation by avoiding the unnecessary edge insertions in

the dynamic lists. Since the vertices of a loop are contracted into a single vertex, when

the algorithm tries to insert parallel edges in the dynamic lists, then by our identification,

algorithm can avoid such insertions. We engineer the implementation of LNFE by our

concept and refer as LNFE-ME.

4.4 Experimental Analysis

In this section, we are going to report our experimental observations that we obtained,

using the algorithms AUXE, LNFE and LNFE-ME. We implemented all algorithms in

plain C++ without using any external graph library. In particular, we implemented the

loop-nesting-tree based algorithms, LNFE and its memory-efficient versions LNFE-ME.

Moreover, we note that all these three algorithms, AUXE, LNFE, LNFE-ME were im-

plemented within a uniform framework, use the same data structures for representing

graphs. We compiled our source codes by g++ v.4.8.4 with full optimization (flag

-O3). The experiments were conducted in a 64−bit GNU/Linux machine running on

Ubuntu 14.04LTS. The machine has an 3696MHz Intel i7-4790 octa-core processor,

16GB of RAM, 16MB of L3 cache, and each core has a 2MB private L2 cache. We mea-

sured CPU running time using the getrusage function, and memory consumption us-

ing Valgrind † (v.3.11). All experiments are executed on a single core without using

any parallelization. All the running times in our experiments were averaged over ten

different executions.

†http://valgrind.org/
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Implementation issue. Both the loop nesting tree and dominator tree use the depth-

first search (DFS) tree for their computation. Therefore, in the combined computation,

we can use the single depth-first search, which makes it possible to deallocate the adja-

cency list of the forward graph during the computation of the dominator tree (because

we compute loop nesting during the DFS formation and dominator tree later). We use

the same idea for the reverse graph as well. Furthermore, we reversed the graph sim-

ply by swapping the roles of forward and reverse adjacency lists rather than making a

complete new copy.

Dataset. We considered several real-world graphs whose characteristics are summa-

rized in Table 4.1. Most of them are taken from the 9th DIMACS implementation chal-

lenge [43] and from the Stanford Large Network Dataset Collection [107]. We also

generated random graphs with specific properties in order to analyze in more depth the

performance of some algorithms. The characteristics of random graphs are presented in

Table 4.3.

Analysis. We start our evaluation by applying the algorithms AUXE, LNFE, and LNFE-

ME on the datasets presented in Table 4.1. Figure 4.5 (top) plots the running times,

reported in Table 4.2. We observe that, on average, algorithm LNFE is about 2.04

times faster than AUXE and almost have the same level of performance with LNFE-ME

because LNFE is around 0.08% faster than LNFE-ME. The result is expected for sparse

input graphs, since in this case LNFE-ME does not get the chance to avoid the insertion

of many parallel edges in the dynamic lists used by the loop nesting tree computations,

but still spends the time to maintain two additional arrays that are necessary for filtering

all the edges.

Furthermore, we noticed that both LNFE and LNFE-ME are more robust than AUXE,

in the sense that their running times are less sensitive to the structure of the graphs.

The performance of AUXE, on the other hand, is more dependent on the graph struc-

ture, which affects the number and size of the auxiliary graphs. More specifically, the

AUXE algorithm is favored in graphs with few 2-edge-connected blocks because it cre-
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Graphs 2-edge connected blocks

Name Type n = |V (G)| m = |E(G)| Max-size Avg-size Total #

p2p-Gnutella31 P2P 14.1K 50.9K 8.0K 8K 1.0

web-NotreDame WG 54.0K 296.2K 16.5K 35.6 760.0

soc-Epinions1 SN 32.2K 443.5K 18.1K 261.0 70.0

Amazon0302 PCP 241.8K 1.1M 140.2K 24.6 7.3K

WikiTalk SN 111.9K 1.5M 50.3K 8.4K 6.0

web-Stanford WG 150.5K 1.6M 58.6K 76.9 1.2K

Amazon0601 PCP 395.2K 3.3M 305.9K 87.7 3.7K

web-Google WG 434.8K 3.4M 225.0K 56.2 4.8K

web-BerkStan WG 334.9K 4.5M 128.2K 64.4 2.9K

SAP-4M MP 4.1M 11.9M 141.5K 39.6 5.3K

Oracle-6M MP 6.4M 15.9M 389.4K 19.0 44.9K

SAP-11M MP 11.1M 36.4M 751.8K 36.7 25.8K

USA-USA RN 23.9M 57.7M 16.1M 158.7 105.7K

LiveJournal SN 3.8M 65.3M 2.9M 747.7 39.5K

SAP-32M MP 32.3M 81.8M 264.1K 22.3 27.0K

SAP-70M MP 69.8M 214.9M 1.3M 8.7 44.8K

Table 4.1: The characteristics of the real-world graphs that we considered; n and m
refers to the number of vertices and the number of edges, respectively. The graph types
are encoded as follows: road network (RN), peer to peer (P2P), web graph (WG), social
network (SN), production co-purchase (PCP), memory profiling (MP). The graphs are
sorted in increasing order according to their number of edges. Additionally, we report
the statistics of their 2-edge-connected blocks, whose size refers to the number of their
vertices.

ates fewer auxiliary graphs (even of large size). To investigate more this effect, we

executed AUXE on the following type of artificial graphs. For a fixed number of ver-

tices (100K) we marginally increase the edge-density by 0.5 each time creating three

different types of graphs: (i) a graph that is 2-edge-connected, (ii) a graph containing

44 2-edge-connected blocks with sizes in the range from 2 to n/5, and (iii) a graph

containing 10K blocks of equal size. We present the plot of this experiment in Figure
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Figure 4.5: Running times per edge in µs (top) and Memory usage per edge in Bytes
(bottom) of the algorithms AUXE, LNFE and LNFE-ME on the real world graph datasets
presented in Table 4.1. (Better viewed in color.)

4.6 and the data are in Table 4.4. As we notice that the running time of AUXE is consis-

tently larger in the case of type (iii) compared to type (i) graphs, which verifies that the

existence of many 2-edge-connected blocks (of equal size) slows down the algorithm.

Additionally, on the type (ii) graphs the running time is in between the other two cases

and gets closer to type (i) graphs as the density increases.

Next, we analyze the memory consumption of the algorithms AUXE, LNFE and

LNFE-ME. Figure 4.5 (bottom) plots the memory usage of the algorithms, reported in

Table 4.2. From this plot, it is clear that LNFE and LNFE-ME significantly require

less memory for all input graphs. Notice that the AUXE algorithm requires much more

memory than the algorithm that uses the loop nesting tree (in this case by a factor of 2.62

than LNFE-ME). The LNFE-ME algorithm improves the memory consumption of LNFE
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Graphs
Running times in seconds Memory consumption in MBytes

AUXE LNFE LNFE-ME AUXE LNFE LNFE-ME

p2p-Gnutella31 0.011 0.008 0.011 5.5 1.5 1.1

web-NotreDame 0.040 0.021 0.024 22.8 7.2 5.2

soc-Epinions1 0.047 0.040 0.044 34.9 8.4 6.2

Amazon0302 0.267 0.218 0.279 99.5 29.3 21.2

WikiTalk 0.174 0.142 0.176 117.7 28.1 20.8

web-Stanford 0.221 0.152 0.196 114.4 31.5 23.2

Amazon0601 0.542 0.595 0.688 62.5 67 40.8

web-Google 0.803 0.623 0.773 275.6 73.7 54.1

web-BerkStan 0.342 0.233 0.279 285.3 85.6 63.3

SAP-4M 4.968 1.506 1.728 806.2 387.7 277.1

Oracle-6M 4.504 2.002 2.238 1331.2 587.1 402.8

SAP-11M 9.551 4.388 5.086 2355.2 1126.4 798.8

USA-USA 18.024 11.517 12.622 2662.4 1843.2 951

LiveJournal 13.292 18.372 16.554 1126.4 1126.4 777.1

SAP-32M 37.062 11.864 13.338 5120 2969.6 2048

SAP-70M 80.614 31.897 36.426 12492.8 6758.4 4812.8

Table 4.2: Running times in seconds and Memory consumption in MBytes respectively
of all the algorithms for computing the 2-edge-connected blocks executed on the real
world graphs of Table 4.1

by about 46.5%, on average. Since all the real-world graphs that we consider are sparse,

therefore, we do additional experiments to compare the performance of the algorithms

AUXE, LNFE and LNFE-ME on dense graphs in order to highlight the full potential of

the LNFE-ME algorithm. We considered random graphs with a fixed number of vertices

(100K) and density in a range that spans from 11 to 536. The results are plotted in

Figure 4.7 (top). The observation is that LNFE gradually loses the advantage over LNFE-

ME, and it even becomes significantly slower for very dense graphs. The bottleneck for

dense graphs is that the loop nesting tree computation needs many memory writes when
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Figure 4.6: Running times in seconds of the AUXE algorithm on the following type
of random graphs. The number of vertices is fixed (100K) in all graphs and we
marginally increase the density by 0.5, each time creating three graphs: (i) a graph
that is 2-edge-connected (represented by the line AUXE(1)), (ii) a graph containing 44
2-edge-connected blocks with sizes in the range from 2 to n/5 (represented by the line
AUXE(44)), and (iii) a graph containing 10K 2ECBs of equal size (represented by the
line AUXE(10K)). The data are presented in Table 4.4. (Better viewed in color.)

it inserts edges into dynamic lists. On the contrary, LNFE-ME was designed to filter

many unnecessary insertions in the dynamic lists maintained by the loop nesting tree

algorithm, and hence, it performs consistently faster than LNFE. In the case of AUXE,

it has to make only one auxiliary graph, so as we explain before; it is faster than LNFE

and LNFE-ME.

Also, we present separately the comparison between the two versions of the algo-

rithm that uses the loop nesting tree LNFE and LNFE-ME. Because, both the algorithms

use the same steps to compute the 2 edge-connected blocks. We analyze the running

time in different steps as following. (i) set-up time (time to read the graph and cre-

ate the adjency list), (ii) dfs-time (time to create the depth first search), (iii) lnf-time

(time to create the loop nesting forest), (iv) dom-tree time (time to create the dominator

tree) and (v) processing time(time to assign the label to each vertex and then create the

blocks). Figure 4.8 represents the graphical representations of these time fractions. It

shows that the LNFE-ME pays off over LNFE when the graphs get denser.
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Figure 4.7: Running times per edge in µs (top) and memory usage per edge in Bytes
(bottom) of the algorithms AUXE, LNFE and LNFE-ME on the random graphs summa-
rized in Table 4.3. (Better viewed in color.)
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Graphs (n = 100K) Running times in seconds Memory in MBytes

Name m AUXE LNFE LNFE-ME AUXE LNFE LNFE-ME

Rand-11D 1.1M 0.1672 0.2212 0.2396 91.1 22.0 16.8

Rand-17D 1.7M 0.2244 0.3120 0.3176 133.1 31.3 20.5

Rand-23D 2.3M 0.2756 0.3976 0.3796 175.0 40.6 27.5

Rand-33D 3.3M 0.3496 0.5196 0.4628 237.8 54.6 38.0

Rand-39D 3.9M 0.3944 0.5956 0.5100 279.8 63.1 45.0

Rand-45D 4.5M 0.4392 0.6740 0.5660 321.7 72.4 51.9

Rand-54D 5.4M 0.5080 0.7880 0.6420 384.5 86.4 62.4

Rand-60D 6.0M 0.5548 0.8600 0.6944 426.4 95.7 69.4

Rand-66D 6.6M 0.6024 0.9408 0.7460 468.3 105.0 76.4

Rand-75D 7.5M 0.6660 1.0480 0.8248 531.2 119.0 86.9

Rand-109D 10.9M 0.9196 1.4428 1.0904 761.7 170.2 125.3

Rand-145D 14.5M 1.1864 1.8668 1.3660 1013.2 226.1 167.2

Rand-182D 18.2M 1.4032 2.2976 1.6368 1228.8 282.0 209.1

Rand-216D 21.6M 1.6196 2.7040 1.8844 1536.0 333.2 247.5

Rand-252D 25.2M 1.8640 3.0916 2.1736 1740.8 389.1 289.4

Rand-286D 28.6M 2.0844 3.4860 2.4280 1945.6 440.3 327.8

Rand-322D 32.2M 2.3224 3.9120 2.7108 2252.8 496.2 369.7

Rand-359D 35.9M 2.6124 4.3604 2.9784 2457.6 552.0 411.6

Rand-393D 39.3M 2.8112 4.7652 3.2488 2662.4 603.3 450.1

Rand-429D 42.9M 3.0584 5.1968 3.5356 2969.6 659.2 492.0

Rand-466D 46.6M 3.3056 5.6772 3.8116 3174.4 715.0 533.9

Rand-499D 49.9M 3.5212 6.0600 4.1000 3481.6 766.3 572.3

Rand-536D 53.6M 3.7992 6.4604 4.3640 3686.4 822.1 614.2

Table 4.3: The characteristics of random graphs, where we keep fixed the number of
vertices to 100K while we increase the edge density value.
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AUXE-Nature, running time in seconds

Graph (n = 100K) Edges AUXE(1) AUXE(42) AUXE(10K)

AUX-2.5D 250K 0.010 0.020 0.044

AUX-3D 300K 0.014 0.020 0.048

AUX-3.5D 350K 0.018 0.032 0.048

AUX-4D 400K 0.022 0.034 0.052

AUX-4.5D 450K 0.025 0.036 0.056

AUX-5D 500K 0.028 0.038 0.056

AUX-5.5D 550K 0.032 0.040 0.060

AUX-6D 600K 0.033 0.041 0.064

AUX-6.5D 650K 0.033 0.042 0.068

AUX-7D 700K 0.035 0.043 0.071

AUX-7.5D 750K 0.038 0.044 0.075

AUX-8D 800K 0.042 0.045 0.078

AUX-8.5D 850K 0.043 0.045 0.081

AUX-9D 900K 0.044 0.046 0.084

Table 4.4: Running times in seconds of the AUXE algorithm on the following type
of random graphs. The number of vertices is fixed (100K) in all graphs and we
marginally increase the density by 0.5, each time creating three graphs: (i) a graph
that is 2-edge-connected (represented by the line AUXE(1)), (ii) a graph containing 44
2-edge-connected blocks with sizes in the range from 2 to n/5 (represented by the line
AUXE(44)), and (iii) a graph containing 10K 2ECBs of equal size (represented by the
line AUXE(10K)).
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5
2-Vertex-Connected Blocks

5.1 Introduction

Let us recall the definition of 2-vertex-connected blocks (2VCB) from Chapter 2. Given

a digraph G = (V,E), we say that two vertices u,v ∈ V are 2-vertex-connected, and

denote this relation by u↔2v v, if there are two vertex-disjoint directed paths from u to

v and two vertex-disjoint directed paths from v to u. Note that, a path from u to v and a

path from v to u need not be vertex-disjoint. Menger’s Theorem [121]* also states the

𝑎 𝑏𝑐

𝑑

𝑒

𝑓

Figure 5.1: Example of 2-vertex-connected blocks, vertices {a,b} are in same 2VCB,
but the paths from a to b ({a,c,d,b},{a,e, f ,b}) and b to a ({b,c,d,a},{b,e, f ,a}) share
the vertices {c,d,e, f}, which are not in same 2VCB. (Better viewed in color.)

equivalent definition of 2-vertex-connected, two different vertices v,w∈G are 2-vertex-

connected, only if the removal of any vertex different from v and w leaves them in

the same strongly connected component. But unlike the 2-edge-connected relation, the

converse is not always true. It holds only if v and w are not adjacent to each other. Since

*To see the statement of Menger’s Theorem, please refer the Appendix A.2.1.
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two mutually adjacent vertices are left in the same strongly connected component by the

removal of any other vertex, but they are not 2-vertex-connected. A 2VCB of a digraph

G=(V,E) is defined as a maximal subset B⊆V such that ∀u,v∈B, u↔2v v. Thus, if u,v

be the vertices of a 2VCB then, the paths that connect the vertices u and v may contain

the vertices that do not belong to the same 2VCB as shown in Figure 5.1, where the

vertices a and b are in the same 2VCB. But the paths from a to b ({a,c,d,b},{a,e, f ,b})

and b to a ({b,c,d,a},{b,e, f ,a}) share the vertices {c,d,e, f} which do not belong to

the same 2VCB.

Lemma 5.1.1. Two different 2VCBs can have at most one vertex in common.

Proof. Let us consider A and B be the two different 2VCBs of a digraph G = (V,E).

Let us assume on the contrary that |A∩B|= 2 and A∩B = {x,y}. Furthermore, let us

suppose u ∈ A\{x,y} and v ∈ B\{x,y} as illustrated in Figure 5.2.

𝑢 𝑣

𝐴 𝐵
𝑥

𝑦

Figure 5.2: Two different 2VCBs A and B share a vertex w.

Since u,x,y ∈ A implies that u↔2v x, u↔2v y and x↔2v y. Similarly, v,x,y ∈ B

implies that x↔2v v and y↔2v v. Now, we have to show that u↔2v v. Assume, for

contradiction, that u and v are not 2-vertex-conneted. Then, there is a strong articulation

point w such that every path from u to v contains w, or every path from v to u contains

w (or both). Without loss of generality, suppose that w is contained in every path from

u to v. Since x and y are distinct, we can assume that w 6= x. (If w = x then we swap

the role of x and y.) Then, u↔2v x implies that there is a path P from u to x that avoids

w, and similarly, x↔2v v implies that there is a path Q from x to v that avoids w. So, P
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5.2. Related Work

followed by Q gives a path from u to v that does not contain w, a contradiction. Hence

u↔2v v.

Remark. This lemma help us to explain the algorithms in next section.

5.2 Related Work

In July 2014, Jaberi [89] proposed an algorithm to compute the 2VCBs of a digraph

G = (V,E) that has the O(mn) time complexity. Later on, in the same year, Georgiadis

et al. [72] presented two different algorithms for the 2VCB computation of a digraph

G; Simpler with O(mn) time complexity and Faster with linear time bound O(m+ n).

Recently in 2015, Georgiadis et al. [73] again presented the algorithm to compute the

2VCB of a digraph in linear time by using loop nesting tree and dominator tree infor-

mation. Furhtermore, we also modify the algorithm presented in [73] and present its

memory efficient version. In particular, our algorithm boost the computation of loop

nesting tree formation and uses the less memory for the dense graph that we already

explained in Chapter 3 - Section 3.6.3.3 Thus, algorithms for 2VCBs computation were

developed from 2014. To the best of our knowledge, only one previous experimental

study is done between these algorithms by Di Luigi et al. [44]. But they did not include

the linear time algorithm present in Georgiadis et al. [73] since this algorithm was avail-

able after their experimental observations. We perform the empirical analysis between

the linear time algorithms presented in [72], [73], and modified version of [73]. Our

experimental observation did not incorporate the algorithms of Jaberi [89] because of

its extensive requirements in storage space. Moreover, we centered our research to ob-

serve the complexity of linear time algorithms rather than O(mn) time algorithms. In

the next sections, we will explain the high-level idea of algorithms and then report our

experimental observations later.
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5.3 Algorithms

Notations. Let us define the common notation that will be used by the 2VCB algo-

rithms. Let Gs (resp., GR
s ) is the flow-graph of G (resp., GR). Let vertex dominator trees

and loop nesting tree of the flow-graph Gs (resp., GR
s ) is denoted by D ( resp., DR) and

H ( resp., HR) respectively. Moreover, let d(v) (resp., dR(v)) denote the parent of v 6= s

in D (resp., DR) and let C(v) (resp., CR(v)) denotes the set of children of a vertex v in D

(resp., DR). Similarly, let D̃(u) (resp., D̃R(u)) represents the set of proper descendants

of a vertex u in D (resp., DR). Let Tu and T (v) denote a tree rooted at u and a tree

that contains a vertex v respectively. Also, given a tree T and v ∈ V (T ), we let CT (v)

represents the set containing v and its children in T .

vertex resilient block. By Menger’s Theorem [121]†, any two distinct vertices v and

w are 2-edge-connected in digraph G if and only if the removal of any edge from G,

v and w are still in same strongly connected component. However, for the 2-vertex

connectivity is more complicated. Because any two adjecent vertices v and w are 2-

vertex-connected if removal of any vertex different from v and w leaves them in same

strongly connected component, while the converse holds only when v and w are not

adjacent. To overcome this complication, Georgiadis et al. [72] defined a term vertex-

resilient for the intermediary relation, denoted by v↔vr w such that any two vertices v

and w are said to be vertex-resilient if the removal of any vertex different from v and

w leaves v and w in the same strongly connected component. Hence, vertex-resilient

block (VRB) of a digraph G = (V,E) is defined as a maximal subset B ⊆ V such that

u↔vr v for all u,v∈ B as illustrated in Figure 5.3. Moreover, as a special case, if |B|= 1,

it is considered as a trivial vertex-resilient block. However, we will not consider such

trivial B in our 2VCB computation. Therefore, in terms of vertex resilient block, if the

two vertices v and w are not adjacent then v↔2v w if and only if v↔vr w. Thus, two

vertices v and w that are vertex-resilient need not be necessarily 2-vertex-connected.

VRB also has the many other properties defined in [72]; few of them are explained

†To see the statement of Menger’s Theorem, please refer the Appendix A.2.1.
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through the following lemmas (proofs are available in [72]).

Lemma 5.3.1. The number of vertex-resilient blocks in a digraph G is at most n−1.

Lemma 5.3.2. The total number of vertices in all vertex-resilient blocks is at most

2n−2.

The following lemma help us to compute the 2VCBs by using 2ECB and VRB.

Lemma 5.3.3. ([72]) For any two distinct vertices v and w, v↔2v w ⇐⇒ v↔vr w and

v↔2e w.

𝑎 𝑏 𝑐 𝑑
𝑒

𝑓 𝑔 ℎ 𝑖 𝑗

(𝑖)

𝑎 𝑏 𝑐
𝑑

𝑒

𝑓 𝑔 ℎ 𝑖 𝑗

(𝑖𝑖)

Figure 5.3: (i) Given a digraph G = (V,E), and (ii) vertex resilent blocks of G.

VRB to 2VCB When we will have the VRB then we can compute the 2VCB by using

Lemma 5.3.3 as follows. We have the VRBs B and the 2ECBs S of G = (V,E), then

we can simply execute the re f ine(B ,S) to get the 2VCB. According to Leema 5.3.4,

this process will take the O(n) time.
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5.3.1 Simpler Algorithm

This algorithm is an immediate application of the characterization of the VRB in terms

of strong articulation points. The details steps are shown in Algorithm 11, which is

taken from [72]. We say that, any vertex x∈V is a strong articulation point if its removal

separates the two distinct vertices u and v ( i.e., u and v belong to different strongly

connected components of G \ x). Thus, we can compute the vertex-resilient blocks by

computing the strongly connected components of G \ x for every strong articulation

point x. Algorithm 11 defines an operation that refines the currently computed blocks

as following. LetB be a set of blocks, let S be a partition of a set U ⊆V , and let x be

a vertex not in U then

refine(B ,S ,x): for each block B ∈B , substitute B by the sets B∩ (S∪{x}) of size at

least two, for all S ∈ S .

Algorithm 11: SIMPLE-VRB

Input: A strongly connected digraph G = (V,E)
Output: vertex resilent blocks of G

1 Compute the strong articulation points of G.
2 Initialize the current set of blocks asB = {V}. (Start from the trivial set

containing only one block.)
3 foreach strong articulation x do
4 Compute the strongly connected components S1, . . . ,Sk of G\ x
5 Execute re f ine(B ,S ,x).

Then following two lemmas will explain why and how the Algorithm SIMPLE-

VRB takes O(mn) time in worse case scenario, proofs are available in Georgiadis et al.

[72].

Lemma 5.3.4. Let N be the total number of elements in all sets of B(N = ∑
B∈B
|B|),

and let K be the number of elements in U. Then, the operation re f ine(B ,S,x) can be

executed in O(N +K) time (Georgiadis et al. [72]).
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Lemma 5.3.5. Algorithm 11 runs in O(mp∗) time, where p∗ is the number of strong

articulation points of G. This is O(mn) in the worst case (Georgiadis et al. [72]).

Proof. The strong articulation points of G can be obtained in linear time ( Italiano et al.

[88]). For each articulation point x, we can compute the strongly connected components

of G\x in linear time (Tarjan [154]). When we get the ith strongly connected component

( Si) in G\ x , then assign label i(i ∈ {1, . . . ,n}) to the vertices in Si. The total number

of blocks (including non-trivial as well) cannot decrease during the iteration and B

contains at most n−1 blocks (By lemma 5.3.1). It maintains the vertex resilient blocks

such that any two distinct blocks in B have at most one element in common, and that

the corresponding block graph is a forest. Therefore, by Lemma 5.3.1, the total number

of elements in all blocks is at most 2n−2. The iteration steps of each strong articulation

point takes O(n) time ( Lemma 5.3.4). This yields that if there are p strong articulation

points, then the desired running time would be O(mp). Since there can be at most n

strong articulation points, the algorithm needs to run up to O(mn) time in worst case

scenario.

Lemma 5.3.6. Let v and w be any vertices of G. Then v↔2v w only if v and w are

siblings or one is the parent of the other in both D and DR (Georgiadis et al. [72]).

5.3.2 Linear Time Algorithm Through Auxiliary Graph

We adapt this algorithm from [72] and refer as AUXV. It computes the 2-vertex-connected

blocks of G in linear time by using Lemma 5.3.6 and auxiliary graphs G2v
r . We note

that, AUXV is more complicated than AUXE (which computes the 2ECBs, explained in

Chapter 4), due to the fact that: unlike the 2ECBs, 2VCBs do not form a partition of V .

In 2ECB computation, auxiliary graph method uses the canonical decomposition that

maintain the original 2ECB of G and approximate the blocks [71]. Because any vertex in

an auxiliary graph Gr is reachable from a vertex outside Gr only through a single strong

bridge. Whereas in 2VCBs computation [72], it will not have that property because

the graph is decomposed according to strong articulation points. Therefore, it needs to
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Algorithm 12: AUXV

Input: A strongly connected digraph G = (V,E)
Output: vertex resilent blocks of G
// Step 1:

1 Choose an arbitrary vertex s ∈V as a start vertex.
2 Compute the dominator tree D.
3 For any vertex v, let C(v) be the set containing v and the children of v in D. For

every vertex v that is not a leaf in D, associate block C(v) with every vertex
w ∈C(v).

// Step 2:

4 Compute the auxiliary graphs Gr for all vertices r that are not leaves in D.
// Step 3: Process the vertices of D in bottom-up order

5 foreach auxiliary graph H = Gr with r not a leaf in D do
6 Compute the dominator tree T = DH

R .
7 Compute the setB of blocks that contain vertices in C(r).
8 foreach B ∈B do
9 execute split(B,T ).

10 Compute the auxiliary graphs HR
q for all vertices q that are not leaves in T .

11 foreach auxiliary graph HR
q with q not a leaf do

12 Compute the setBq of blocks that contain at least two ordinary vertices
in HR

q .
13 Compute the set S of the strongly connected components of HR

q \q.
14 Refine the blocks in Sq by executing re f ine(Bq,S ,q).

maintain the more complicated forest representation and sophisticated auxiliary graph

than 2ECB computation.

For 2-vertex connectivity, we define an auxiliary graph G2v
r , for each vertex r that

is not a leaf in D. Let us recall, a vertex v 6= s is a strong articulation point in G if

and only if it is not a leaf in D∪DR [88]. Let Ck(r) denote the level k descendants of

r (i.e., C0(r) = {r}, C1(r) = C(r), etc). We build G2v
r as follows. The vertex set of

Gr is ∪3
k=0Ck(r) and it is partitioned into a set of ordinary vertices C1(r)∪C2(r) and

a set of auxiliary vertices C0(r)∪C3(r). Then G2v
r results from G by contracting all

vertices that are not descendants of r in D into r, and contracting all descendants of

each w ∈C3(r) into w.

In AUXV computation, current blocks are refined through its execution, and we
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maintain them in a block forest data structure F = (VF ,EF). The node set VF con-

tains a node for each vertex u ∈V , and a block node vB for each block B. The edge set

EF contains an edge (u,vB) if vertex u ∈ V is in block B. Algorithm AUXV initializes

F by creating one block for each set C(v)∪ {v} of cardinality at least two. Next, it

computes the first-level auxiliary graphs Jr = G2v
r of G. Then, it uses the dominator

tree of each JR
r in order to construct the second-level auxiliary graphs and refines the

blocks in F according to these dominator trees using Lemma 5.3.6. After the removal

of a particular vertex in each second level auxiliary graph, and then by refining F ac-

cording to the block partition induced by those strongly connected components, final

2-vertex-connected blocks will be formed.

split(C,T ): Return the set that consists of the blocks B∩CT (v) of size at least two, for

all v ∈V (T ).

Note: if |V (T )|= N, then split operation executed in O(N) time [72].

5.3.3 Linear Time Algorithm Through Loop Nesting Tree and Dom-
inator Tree

This algorithm uses the loop nesting trees and dominator trees. We take an algorithm

from [73] and refer as LNFV. The detailed steps are shown in Algorithm 13.

Algorithm LNFV compute the 2VCBs in linear-time. It uses the similar approach

of LNFE, which computes the 2ECBs in linear-time explained in Chapter 4. The main

difference is: instead of computing vertex labels as like in LNFE, we maintain the same

data structure while refining the maintained blocks as in AUXV. The blocks are refined

with respect to the loops in Gs and GR
s . Recall that, for any vertex v, C(v) (resp.,

CR(v)) represents the set of children of v in D (resp., DR). For any pair of vertices u

and v we let C(u,v) = (C(u)∪ {u})∩ (CR(v)∪ {v}). That is, set C(u,v) contains all

vertices in C(u)∩CR(v). Also, if u = v or u ∈CR(v) then u ∈C(u,v), and if v ∈C(u)

then v ∈ C(u,v). We can compute all nonempty C(u,v) sets in O(n) time [44]. The

following lemma is an immediate consequence of Lemma 5.3.6.
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Algorithm 13: LNFV

Input: A strongly connected digraph G = (V,E)
Output: The Vertex resilent blocks of G
/* Initialization */

1 Compute the reverse digraph GR. Select an arbitrary start vertex s ∈V .
2 Compute the dominator trees D and DR of the flow graphs Gs and GR

s ,
respectively.

3 Compute the loop nesting trees H and HR of the flow graphs Gs and GR
s ,

respectively.
/* Initialize block forest */

4 Compute the sets c(u,v) for any pair of vertices u and v.
5 Initialize the block forest F to contain one block for each set c(u,v) with at least

two vertices.
6 foreach u ∈ N∪{s} in a bottom-up order of D do /* Forward direction: */

7 Find the set of blocksB that contain at least two vertices in c(u)∪{u}
8 Compute the collection of vertex subsets

S = {H(v)∩ c(u):h(v) /∈ D̃(u)∧ v ∈ c(u)}
9 Execute refine(B ,S ,u)

10 if u 6= s then
11 foreach B ∈B such that u ∈ B do
12 Choose an arbitrary vertex v 6= u in B
13 Compute the nearest common ancestor w of u and v in H
14 if w /∈ c(d(u)) then
15 Set B = B\u
16 if |B|= 1 then
17 delete B from F

18 foreach u ∈ NR∪{s} in a bottom-up order of DR do /* Reverse direction */

19 Find the set of blocksB that contain at least two vertices in cR(u)∪{u}
20 Compute the collection of vertex subsets

S = {HR(v)∩ cR(u):hR(v) /∈ D̃R(u)∧ v ∈ cR(u)}
21 Execute refine(B ,S ,u)
22 if u 6= s then
23 foreach B ∈B such that u ∈ B do
24 Choose an arbitrary vertex v 6= u in B
25 Compute the nearest common ancestor wR of u and v in HR

26 if wR /∈ cR(dR(u)) then
27 Set B = B\u
28 if |B|= 1 then
29 delete B from F
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Lemma 5.3.7. Let G = (V,E) be a strongly connected digraph, and let s ∈ V (G) be

an arbitrary start vertex. Any two vertices x and y are vertex-resilient only if they are

located in a common set C(u,v) (Georgiadis et al. [73]).

According to the Lemma 5.3.7, each vertex-resilient block is contained in a C(u,v)

set. Therefore, set C(u,v) defines a “coarse” block forest. The LNFV algorithm refine

the C(u,v) by using the loop nesting trees H and HR with the help of Theorem 5.3.8.

Actually, C(u,v) can also be represented by a block forest of size O(n) because as we

already know in AUXV algorithm, these sets can be constructed by applying the split

operation to the sets C(v)∪{v}, for each vertex v that is not a leaf in D.

Theorem 5.3.8. ([73, page 38]) Let u be a strong articulation point of G, and let s be

an arbitrary vertex in G. Let C be a strongly connected component of G \ u and D̃(u)

(resp., D̃R(u)) be the set of proper descendants of u in D (resp., DR). Then one of the

following cases holds:

(a) If u is a nontrivial dominator in Gs but not in GR
s then either C ⊆ D̃(u) or C =

V \D(u).

(b) If u is a nontrivial dominator in GR
s but not in Gs then either C ⊆ D̃R(u) or C =

V \DR(u).

(c) If u is a common nontrivial dominator of Gs and GR
s then either C⊆ D̃(u)\D̃R(u),

or C ⊆ D̃R(u)\ D̃(u), or C ⊆ D̃(u)∩ D̃R(u), or C =V \ (D(u)∪DR(u)).

(d) If u = s then C ⊆ D̃(u).

Moreover, if C ⊆ D̃(u) (resp., C ⊆ D̃R(u)) then C = H(w) (resp., C = HR(w)) where w

is a vertex in D̃(u) (resp., D̃R(u)) such that h(w) 6∈ D̃(u) (resp., hR(w) 6∈ D̃R(u)).

The detailed steps of LNFV is in Algorithm 13, which is taken from [73]. After

defining the initial blocks, it performs the “forward pass” which processes D and H.

During the “forward pass”, it visits the non-leaf vertices of D in bottom-up order. For

each such vertex u, it computes a partition S of C(u), such that each set S∈S contains

a subset of children of u in D that are strongly connected in G \ u. Finally, it need to
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find the blocks that may contain vertices that are vertex-resilient with u. After the com-

pletion of this forward pass, it executes the “reverse pass” that performs the identical

computations in DR and HR.

5.3.4 Memory Efficient Version

As in LNFE algorithm of 2ECB computation, we also modify the LNFV algorithm dur-

ing its loop nesting tree computation by using our techniques which we explained in

Chapter 3 - Section 3.6.3.3. During the loop nesting tree computation, loops are con-

tracted into a single vertex. Therefore, we can improve the memory usage by excluding

the unnecessary or parallel edge insertions in the dynamic lists. We changed the imple-

mentation of LNFV by this concept and refer as LNFV-ME.

5.4 Empirical Analysis

We perform the experimental observations between the algorithms AUXV, LNFV and

LNFV-ME. With reference to the loop nesting tree base algorithms, as in 2ECB, we im-

plemented the streamline version LNFV and its memory-efficient version LNFV-ME. The

development framework, hardware configuration of a testing machine, testing datasets,

and experimental paradigms are completely identical with 2ECB computation. In terms

of 2VCB, the characteristics of the graphs in our dataset are described in detail in Table

5.1.

Implementation Issues: As in LNFE and LNFE-ME algorithms of 2ECB compuata-

tion, during the LNFV and LNFV-ME computation, loop nesting tree and dominator tree

use the DFS tree. Therefore, we use the single DFS tree for their combine computation

that allows us to deallocate the adjacency list of the forward graph after the formation of

the dominator tree (since loop nesting tree is formed during the DFS formation and then

compute the dominator tree). Furthermore, we reverse the graph by swapping the roles

of the forward and the reverse adjacency lists rather than to make a whole new copy. We

considered the same real-world graphs that we used in our 2ECB computation. In terms
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Graphs 2-vertex-connected blocks

Name Type n = |V (G)| m = |E(G)| Max-size Avg-size Total #

p2p-Gnutella31 P2P 14.1K 50.9K 7.9K 4.3 3.5K

web-NotreDame WG 54.0K 296.2K 6.2K 3.0 22K

soc-Epinions1 SN 32.2K 443.5K 17.6K 3.4 12.6K

Amazon0302 PCP 241.8K 1.1M 123.6K 4.1 74.8K

WikiTalk SN 111.9K 1.5M 50.2K 2.9 53.6K

web-Stanford WG 150.5K 1.6M 26.2K 3.9 40.8K

Amazon0601 PCP 395.2K 3.3M 287.6K 6.0 78.1K

web-Google WG 434.8K 3.4M 151.4K 3.5 149.3K

web-BerkStan WG 334.9K 4.5M 64K 3.4 109.1K

SAP-4M MP 4.1M 11.9M 119.7K 2.6 271.9K

Oracle-6M MP 6.4M 15.9M 283K 2.5 1471.6K

SAP-11M MP 11.1M 36.4M 640.9K 3.0 752.3K

USA-USA RN 23.9M 57.7M 16M 4.24 7.4K

LiveJournal SN 3.8M 65.3M 2.9M 5.4 862.5K

SAP-32M MP 32.3M 81.8M 197.4K 3.0 478.4K

SAP-70M MP 69.8M 214.9M 947.5K 2.3 6.9M

Table 5.1: The characteristics of the real-world graphs that we considered; n and m
refers to the number of vertices and the number of edges, respectively.The graph types
are encoded as follows: road network (RN), peer to peer (P2P), web graph (WG), social
network (SN), production co-purchase (PCP), memory profiling (MP).The graphs are
sorted in increasing order according to their number of edges.Additionally, we report
the statistics of their 2-vertex-connected blocks, whose size refers to the number of their
vertices.

of the 2VCB, their characteristics are summarized in Table 5.1. Furthermore, the same

type of random graphs that were created in 2ECB computation are also used here to

observe the specific properties and base performance of the algorithms. All the running

times reported in our experiments were averaged over ten different executions.

We start the experimental observation of 2VCB by applying the algorithms that we

discussed before, AUXV, LNFV and LNFV-ME. In beginning, we used these algorithms
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Figure 5.4: Running times per edge in µs (top) and Memory usage per edge in Bytes
(bottom) of the algorithms AUXV, LNFV and LNFV-ME on the real world graph datasets
presented in Table 5.1. (Better viewed in color.)

over the datasets presented in Table 5.1 and compare their running time. The output

of the experiments are reported in Table 5.2 and plotted by the Figure 5.4 (top). We

observe that the algorithm LNFV is faster than AUXV by a factor of 5 on average. Also,

on average, LNFV is 6.5% faster than LNFV-ME. The result is expected for sparse in-

put graphs, because even if the graph is sparse, LNFV-ME algorithm does not avoid the

insertion of many parallel edges in the dynamic lists used by the loop nesting tree com-

putations. To do so, it has to use two more additional arrays which are necessary for

filtering all the edges and takes the time.

Moreover, we notice that both LNFV and LNFV-ME are much better than AUXV, in a

sense that their running times are less sensitive to the graph structure. On the other hand,

the performance of AUXV is more dependent on the graph structure, which affects the
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Graphs
Running times in seconds Memory consumption in MBytes

AUXV LNFV LNFV-ME AUXV LNFV LNFV-ME

p2p-Gnutella31 0.028 0.012 0.012 7.0 2.5 2.5

web-NotreDame 0.168 0.032 0.040 30.5 9.2 9.2

soc-Epinions1 0.128 0.044 0.052 38.7 7.9 6.2

Amazon0302 0.696 0.304 0.332 131.3 42.1 42.1

WikiTalk 0.272 0.168 0.192 130.2 26.4 20.8

web-Stanford 0.568 0.192 0.224 129.2 29.2 25.7

Amazon0601 1.272 0.656 0.732 70.0 57.9 40.8

web-Google 1.700 0.764 0.880 336.8 74.7 74.7

web-BerkStan 1.220 0.296 0.328 312.2 80.5 63.3

SAP-4M 14.872 2.168 2.388 1228.8 731.6 731.6

Oracle-6M 19.488 3.124 3.372 2048.0 1126.4 1126.4

SAP-11M 33.868 6.212 6.552 3686.4 1945.6 1945.6

USA-USA 88.548 20.076 21.628 3174.4 1331.2 951.0

LiveJournal 20.156 17.264 15.900 1126.4 1024.0 777.1

SAP-32M 121.296 16.956 18.456 8499.2 5836.8 5836.8

SAP-70M 256.992 44.136 48.556 19865.6 12595.2 12595.2

Table 5.2: Running times in seconds and Memory consumption in MBytes respectively
of the algorithms for computing the 2-edge-connected blocks executed on the real world
graphs of Table 5.1

number and size of the auxiliary graphs. More precisely, the AUXV algorithm is favored

in graphs with few 2-vertex-connected blocks because it creates less number auxiliary

graphs (no matter how big they are). To scrutinize this behavior of AUXV, we applied

the AUXV over the following type of artificial graphs. For a fixed number of vertices

(100K), we marginally increase the density by 0.5 each time creating three different

types of graphs: (i) a graph that is 2-vertex-connected (i.e. itself a 2VCB), (ii) a graph

containing 44 unequal 2-vertex-connected blocks ( sizes in the range from 2 to n/5),

and (iii) a graph containing 10K blocks of equal size. The result of this experiment
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Figure 5.5: Running times in seconds of the AUXV algorithm on the following type
of random graphs. The number of vertices is fixed (100K) in all graphs and we
marginally increase the density by 0.5, each time creating three graphs: (i) a graph
that is 2-vertex-connected (represented by the line AUXV(1)), (ii) a graph containing 44
2-vertex-connected blocks with sizes in the range from 2 to n/5 (represented by the line
AUXV(44)), and (iii) a graph containing 10K 2VCBs of equal size (represented by the
line AUXV(10K)). The data are presented in Table 5.3. (Better viewed in color.)

is presented in Table 5.3 and plotted by the Figure 5.5. We can easily notice that the

running time of AUXV is consistently larger in the case of type (iii) as compared to

type (i) graphs, which verifies that the existence of many 2-vertex-connected blocks (of

equal or unequal size ) slows down the algorithm. Additionally, on the type (ii) graphs

the running time is in between the other two cases and gets closer to type (i) graphs as

the density increases.

Next, we analyze the memory consumption of the algorithms AUXV, LNFV and

LNFV-ME. Figure 5.4 (bottom) plots the memory usage of the algorithms, reported in

Table 5.2. The plots in Figure 5.4 clearly shows that the LNFV and LNFV-ME require

significantly less memory for all input graphs than AUXV. On average, LNFV-ME uses

about 2.81 times less memory than AUXV, and improves the memory consumption of

LNFV by about 9%.

Since all the real-world graphs that we consider are sparse, so we made the ad-

ditional experiments to compare the performance of the algorithms AUXV, LNFV and
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Figure 5.6: Running times per edge in µs (top) and memory usage per edge in Bytes
(bottom) of the algorithms AUXV, LNFV and LNFV-ME on the random graphs summa-
rized in Table 5.4. (Better viewed in color.)

LNFV-ME on dense graphs in order to highlight the full potential of the LNFV-ME al-

gorithm. As like in 2ECB computation, we considered the same random graphs with a

fixed number of vertices (100K) and density in a range that spans from 11 to 536. The

results are plotted in Figure 5.6 (top) (see also the Table 5.4). We observed that LNFV

gradually loses the advantage over AUXV, and it even becomes significantly slower for

very dense graphs. The bottleneck in the case of dense graphs is the loop nesting tree

computation since it introduces many memory writes when it inserts edges into dynamic

lists. On the other hand, LNFV-ME was designed to filter many unnecessary insertions in

the dynamic lists maintained by the loop nesting tree algorithm, and hence, it performs

consistently faster than both AUXV and LNFV.
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Figure 5.7: Fraction of running time in seconds, that has taken by LNFV(top) and LNFV-
ME(bottom) in their different steps during the execution on real world graphs presented
in Table 5.1 (Better viewed in color.)
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5.4. Empirical Analysis

We also analyze the memory consumption of these algorithms for such dense graph

computation. Figure 5.6 (bottom) plots the memory usage, reported in Table 5.4. As

we can notice that the AUXV requires much more memory than the algorithm that uses

the loop nesting tree (in this case by a factor of 3.12). The LNFV-ME algorithm pays off

the memory consumption over LNFV by about 30%, on average.

In addition, both the algorithms LNFV and LNFV-ME use the same steps to compute

the 2-vertex-connected blocks. We analyzed the time that has taken by these algorithms

in different steps as following (i) set up time (i.e., time to read the graph and create

the adjency list), (ii) dfs-time (i.e., time to create the DFS), (iii) lnf-time (time to create

the loop nesting forest, even though it created with DFS simultaneously, we separately

measure its time), (iv) dom-tree time (time to create the dominator tree) and (v) pro-

cessing time (to create the 2VCBs). Figure 5.7 represents the graphical representations

of these time fractions.

Analysis the result with 2ECB Let take the algorithm LNFE and AUXE from 2ECB

computation explain in Chapter 4, and LNFV and AUXV from 2VCB computation. We

can heed that the gap between the LNFE and AUXE is smaller as compared to the gap

between the LNFV and AUXV. Similarly, as like in 2-edge-connected blocks, in the 2-

vertex-connected blocks also the algorithm based on loop nesting trees, LNFV, achieves

overall the best performance. This result verified the fact that the auxiliary graphs that

are created by AUXE are less complicated than the auxiliary graphs created by AUXV.

Moreover, in 2ECB computation, auxiliary graphs need less memory than in 2VCB

computation. Furthermore, the time fractions plots of 2ECB and 2VCB computations

clearly show that the processing time for 2VCB computation is much higher than then

processing time of 2ECB computation for all algorithms (LNFV vs LNFE and LNFV-ME

vs LNFE-ME).
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AUXV-Nature, running time in seconds

Graph (n = 100K) Edges AUXV(1) AUXV(42) AUXV(10K)

AUX-2.5D 250K 0.084 0.184 0.252

AUX-3D 300K 0.084 0.188 0.252

AUX-3.5D 350K 0.084 0.196 0.260

AUX-4D 400K 0.084 0.208 0.256

AUX-4.5D 450K 0.088 0.204 0.264

AUX-5D 500K 0.096 0.208 0.256

AUX-5.5D 550K 0.096 0.224 0.272

AUX-6D 600K 0.088 0.228 0.272

AUX-6.5D 650K 0.084 0.228 0.276

AUX-7D 700K 0.092 0.232 0.280

AUX-7.5D 750K 0.096 0.240 0.280

AUX-8D 800K 0.084 0.252 0.284

AUX-8.5D 850K 0.092 0.248 0.288

AUX-9D 900K 0.108 0.252 0.296

Table 5.3: Running times in seconds of the AUXV algorithm on the following type
of random graphs. The number of vertices is fixed (100K) in all graphs and we
marginally increase the density by 0.5, each time creating three graphs: (i) a graph
that is 2-vertex-connected (represented by the line AUXV(1)), (ii) a graph containing 44
2-vertex-connected blocks with sizes in the range from 2 to n/5 (represented by the line
AUXV(44)), and (iii) a graph containing 10K 2VCBs of equal size (represented by the
line AUXV(10K)).
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Graphs (n = 100K) Running times in seconds Memory in MBytes

Name m AUXV LNFV LNFV-ME AUXV LNFV LNFV-ME

Rand-11D 1.1M 0.276 0.232 0.252 102.3 20.4 16.8

Rand-17D 1.7M 0.356 0.316 0.304 144.1 29.8 20.5

Rand-23D 2.3M 0.412 0.388 0.384 184.6 39.1 27.5

Rand-33D 3.3M 0.524 0.508 0.448 247.5 53.0 38.0

Rand-39D 3.9M 0.580 0.576 0.516 289.4 60.8 45.0

Rand-45D 4.5M 0.636 0.664 0.564 331.3 70.1 51.9

Rand-54D 5.4M 0.720 0.744 0.628 394.1 84.1 62.4

Rand-60D 6.0M 0.788 0.832 0.684 436.0 93.4 69.4

Rand-66D 6.6M 0.844 0.908 0.736 478.0 102.7 76.4

Rand-75D 7.5M 0.940 1.024 0.808 540.8 116.7 86.9

Rand-109D 10.9M 1.216 1.356 1.044 771.4 167.9 125.3

Rand-145D 14.5M 1.560 1.788 1.324 1022.8 223.8 167.2

Rand-182D 18.2M 1.864 2.216 1.584 1228.8 279.7 209.1

Rand-216D 21.6M 2.136 2.584 1.780 1536.0 330.9 247.5

Rand-252D 25.2M 2.456 2.956 2.092 1740.8 386.8 289.4

Rand-286D 28.6M 2.764 3.324 2.332 1945.6 438.0 327.8

Rand-322D 32.2M 3.016 3.672 2.552 2252.8 493.9 369.7

Rand-359D 35.9M 3.428 4.208 2.868 2457.6 549.8 411.6

Rand-393D 39.3M 3.696 4.520 3.120 2764.8 601.0 450.1

Rand-429D 42.9M 3.980 4.968 3.400 2969.6 656.9 492.0

Rand-466D 46.6M 4.304 5.416 3.668 3174.4 712.7 533.9

Rand-499D 49.9M 4.628 5.816 3.928 3481.6 764.0 572.3

Rand-536D 53.6M 4.864 6.204 4.200 3686.4 819.0 614.2

Table 5.4: The characteristics of random graphs, where we keep fixed the number of
vertices to 100K and increase the edge density.
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6
2-Vertex-Connected Components

6.1 Introduction

Let us recall the definition of 2-vertex-connected component (2VCC) from Chapter 2.

Given a directed graph G = (V,E), two distinct vertices v,w∈V (G) are called 2-vertex-

connected, if there are two internal vertex-disjoint paths from v to w and two internal

vertex-disjoint paths from w to v. But note that, a path from v to w and a path from w to v

need not be vertex-disjoint. We let denote the 2-vertex-connected relation between two

vertices v and w by v↔2v w. We already explained in Chapter 5, Menger’s Theorem

𝑎 𝑏 𝑐 𝑑

𝑒 𝑓 𝑔 ℎ

𝑖 𝑗 𝑘 𝑙

𝑚 𝑛 𝑜 𝑝

𝐺𝑟𝑎𝑝ℎ 𝐺

𝑎 𝑏 𝑐 𝑑

𝑒 𝑓 𝑔 ℎ

𝑖 𝑗 𝑘 𝑙

𝑚 𝑛 𝑜 𝑝

2𝑉𝐶𝐶 𝑜𝑓 𝐺

Figure 6.1: Example of 2VCCs of a connected digraph G, SAPs are shown in red color.
(Better viewed in color).

[121]* also states the equivalent definition of 2-vertex-connected, two different vertices

*To see the statement of Menger’s Theorem, please refer the Appendix A.2.1.
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v,w ∈ G are 2-vertex-connected, only if the removal of any vertex different from v

and w leaves them in the same strongly connected component. But unlike the 2-edge-

connected relation that is explained in Chapter 4, the converse is not always true. It

holds only if v and w are not adjacent to each other. Since two mutually adjacent vertices

are left in the same strongly connected component by the removal of any other vertex,

but they are not 2-vertex-connected. Thus, if G = (V,E) is 2-vertex-connected, then

it doesn’t have any strong articulation points. 2-vertex-strongly-connected component

(2VCC) of G is its maximal subgraph such that for all two distinct vertices u,v ∈ 2VCC

are 2-vertex-connected. Furthermore, unlike in 2VCB, a path for u↔2v v of a 2VCC

does not contain a vertex w, if w /∈ 2VCC as illustrated in Figure 6.1. Therefore, one

vertex may include in multiple 2VCCs but two different 2VCCs cannot have more than

one vertex in common that is proved by following lemma 6.1.1.

Lemma 6.1.1. Two different 2-vertex-connected components cannot have a more than

one vertex in common.

Proof. We proceed by contradiction.

Let us consider that G = (V,E) be a digraph, and A and B are the two different

2VCCs in G. We also let a,b be two vertices that are common between A and B as

shown in Figure 6.2.

𝑎

𝑏

𝐴 𝐵

𝑢 𝑣

𝑃1

𝑃2

𝑃3

𝑃4

Figure 6.2: Maximum vertices between two different 2VCCs, here we suppose A and B
be two different 2VCCs. Also, we let a and b be two different vertices and in common
between A and B.
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Since a ∈ A =⇒ ∀u ∈ A\{a}, u↔2v a =⇒ there exist two distinct vertex-disjoint

paths between u and a, and at least one of them does not contain a vertex b. Let us

suppose a path P1 connects the vertices from u to a without b. Also, b ∈ A =⇒ ∀u ∈

A\{b}, u↔2v b =⇒ there exist two distinct vertex-disjoint paths between u and b, and

at least one of them is vertex-disjoint to the path P1. Let us consider a path P2 connects

the vertices from u to b and vertex-disjoint to P1. Again, a∈ B =⇒ ∀v∈ B\{a}, a↔2v

v =⇒ there exist two distinct vertex-disjoint paths between a and v, and at least one

of them does not contain a vertex b. Let say a path P3 starts at vertex a and ends at

v without vertex b. Similarly, b ∈ B =⇒ ∀v ∈ B \ {b}, b↔2v v =⇒ there exist two

distinct vertex-disjoint paths between b and v, and at least one of them is vertex-disjoint

to the path P3. Suppose, a path P4 connects the vertices from b to v and vertex-disjoint

to P3. Now, let us consider the operations given below.

P1 : P1︸︷︷︸
u
∗−→a

∪ P3︸︷︷︸
a
∗−→v

: a path from u to v.

P2 : P2︸︷︷︸
u
∗−→b

vertex-disjoint
to P1

⋃
P4︸︷︷︸

b
∗−→v

vertex-disjoint
to P3

: a path from u to v and vertex-disjoint to P1.

Thus, there exist two distinct vertex-disjoint paths P1 and P2 from every vertex

u ∈ A to each vertex v ∈ B. Analogously, we also have the two vertex-disjoint paths

from v to u as well. Therefore, all the vertices u ∈ A and v ∈ B are 2-vertex-connected.

It implies that A∪B is 2-vertex-connected subgraph. Since, by definition 2VCC is a

maximal 2-vertex-connected subgraph and here, A and B are not a maximal 2-vertex-

connected subgraph. So, they cannot be a 2VCC, it’s a contradiction as shown in Figure

6.2.

Note: Lemma 6.1.1 elaborates the concept of a 2VCC and describes the relationships

between two different 2VCCs, which will be helpful to explain the architecture of a

algorithm in next sections.
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6.2 Related Work

Erusalimskii and Svetlov [49] first considered the problem of computing the 2-vertex-

connected components of a digraph. Their algorithm reduces the 2-vertex-connected

components of an undirected graph without any information on running time complexity

bound. The reduction process repeatedly computes the strongly connected components

of all subgraphs G\ v, for every vertex v and removing the edges that connect different

strongly connected components. The edge removing process continues until and unless

if any of the edges remain, which connect the two different strongly connect component

of the current subgraphs of G \ v. In this process, the 2-vertex-connected components

of the resulting digraph G are identical to the 2-vertex-connected components of the

undirected version of G. Later on, Jaberi [90] showed that the algorithm presented

on [49] has O(m2n) running time bound. Moreover, Jaberi [90] also proposed two

different algorithms with O(mn) time complexity. The first algorithm decomposes the

digraph by repeatedly removing a strong articulation point at a time. And the second

algorithm divides the digraph by using a dominator tree [106]. After that, Di Luigi

et al. [44] proposed a new O(mn)-time algorithm that refines the dominator tree division

technique, which is previously applied by an O(mn) time algorithm presented in Jaberi

[90]. Very recently, Henzinger et al. [83] propose an O(n2)-time algorithms that apply

the hierarchical graph sparsification technique.

To the best of our knowledge, Di Luigi et al. [44] performed the first experimental

study on 2-vertex-connected component of a directed graph. They find that, on average,

their algorithm is faster than the algorithm of Jaberi [90] by a factor of two, while the

algorithm by Erusalimskii and Svetlov [49] is not competitive even for graphs of mod-

erate size. Since Henzinger et al. [83] published their algorithm after the experimental

observations of Di Luigi et al. [44]. We perform the empirical analysis between the

algorithm proposed by Di Luigi et al. [44] that has O(mn) running time, also known

as a best in terms of running time from their experimental study, and very recent algo-

rithm proposed by Henzinger et al. [83], which has the O(n2) time complexity. We also
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present the hybrid algorithm that merges the concept of [44] and [83] within O(n2) time

complexity. In our experiments, we evaluated the efficiency of all selected algorithms

on large digraphs, which are taken from the different real-world application domains.

In the next sections, we will explain the high-level idea of the chosen algorithms and

then report our experimental observations later.

6.3 Algorithms

In our assertion, all the algorithms that compute the 2 vertex-connected components of

a digraph are generally based on three different approaches. (i) repeatedly removing the

strong articulation points (SAP), (ii) using the dominator tree divisions to partition the

graphs, and (iii) Hierarchical graph sparsification process. The first approach is trivial,

so, we are going to explain the next two techniques in details.

Common Notations. Let us define the common notations for all 2VCC algorithms as

following. Let Gs (resp., GR
s ) be the flow-graph of a digraph G (resp., GR). Let D (

resp., DR) be the vertex dominator tree of Gs (resp., GR
s ). Also, for any vertex v, we let

d(v) (resp., dR(v)) and C(v) (resp., CR(v)) denote the parent of v (6= s) in D (resp., in

DR) and children of v in D (resp., in DR) respectively.

6.3.1 Dominator Tree Division

The dominator tree division (DTD) algorithm is proposed by Di Luigi et al. [44]. It is

also known as the refinement version of Jaberi [90]. This DTD algorithm is based on

the Lemma 6.3.1 that is given below, which is also called the restatement version of the

lemma presented in Jaberi [90]. Jaberi’s algorithm uses the dominator tree to divide the

graph G into several subgraphs that contain all the 2VCCs of G.

Lemma 6.3.1. Let G = (V,E) be a strongly connected digraph, and let s ∈ V be an

arbitrary start vertex. Any three vertices x,y and z (not necessarily distinct) belong to a

common 2-vertex-connected component Σ of G only if they are all siblings in D or one

is the immediate dominator of the other two in G (Di Luigi et al. [44]).
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For any pair of vertices u and v of G, we let C(u,v) = (C(u)∪{u})∩ (CR(v)∪{v}).

The set C(u,v) contains all vertices in C(u)∩CR(v). Also, if u = v or u ∈CR(v) then

u ∈ C(u,v). Similarly, if v ∈ C(u) then v ∈ C(u,v). We can compute all non-empty

C(u,v) sets in O(n) time [44]. Let G(u,v) be the induced subgraph of G that is induced

by the vertices of C(u,v).

Lemma 6.3.2. Let x and y be any vertices in G such that they are in a 2-vertex-

connected component Σ of G. Then x and y are vertices of a subgraph G(u,v) (Di

Luigi et al. [44]).

Proof. We are going to give the proof of this lemma because it explains the concept of

DTD algorithm in details.

Observation. Let us apply Lemma 6.3.1 to Gs and GR
s , x,y ∈ Σ =⇒ x and y are

either siblings in D, or d(x) = y, or d(y) = x. Also x and y are either siblings in DR,

or dR(x) = y, or dR(y) = x. Now, by considering the relation between x and y in the

dominator trees D and DR, we will have the following cases.

(i) If x and y are siblings in both Gs and GR
s , then d(x) = d(y) and dR(x) = dR(y), so

{x,y} ⊆C(d(x),dR(x)).

(ii) If x and y are siblings in Gs and dR(x) = y, then x ∈C(d(x),y). But we also have

y ∈C(d(x),y) because y ∈C(d(x)).

(iii) If d(x) = y and dR(x) = y, then x∈C(y,y), and by definition, C(y,y) also contains

y.

(iv) If d(x) = y and dR(y) = x, then as per our consideration for 2VCC, Σ has at least

3 vertices, suppose a vertex z ∈ {V (Σ)\{x,y}}. By Lemma 6.3.1 vertex z can be

neither a sibling of y nor the parent of y in D. So z must be a sibling of x in D.

Similarly, we conclude that z is a sibling of y in DR. Hence z ∈C(y,x). But since

y ∈C(dR(x)) and x ∈C(d(y)), we also have x,y ∈C(y,x).

The remaining cases are analogous (with the role of x and y interchanged), so the lemma

follows.
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Algorithm 14: DTD

Input: A strongly connected digraph G = (V,E)
Output: 2VCCs of G
// Step 1:

1 Choose an arbitrary start vertex s ∈V .
2 Compute the dominator trees D and DR.
// Step 2:

3 If G\ s is strongly connected and d(v) = dR(v) = s, for all vertices v 6= s, then
return G. (G is 2-vertex-connected)

// Step 3:

4 Compute the subgraphs G(u,v) of G with at least three vertices.
// Step 4:

5 foreach subgraph G(u,v) with u 6= v do
6 Compute the strongly connected components of G(u,v).
7 Compute recursively the 2-vertex-connected components of each strongly

connected component.
// Step 5:

8 foreach subgraph G(u,v) do
9 Compute the strongly connected components of G(u,v)\ v.

10 Process each strongly connected component S of G(v,v)\ v as follows : If
there are two arcs from v to S and two arcs from S to v then compute
recursively the 2-vertex-connected components of the subgraph induced by
S∪{v}. Otherwise, compute recursively the 2-vertex-connected
components of the subgraph induced by S.

Now we are going to explain how the DTD algorithm outputs the 2VCCs of the di-

graphs G = (V,E) in O(mn) time; Its details steps are on Algorithm 14, taken from

[44]. At first, it computes the dominator trees D and DR, then computes all sets C(u,v)

such that of |C(u,v)|≥ 3 as following. It number the vertices in D (resp., DR) in pre-

order by pre(v) (resp., preR(v)). Then, for each vertex v, it assign a label with pair

〈pre(d(v)), preR(dR(v))〉, and sort the labels lexicographically in O(n) time by radix

sort. Because of the radix sort, the distinct labels 〈pre(u), preR(v)〉 are in ascending

order. After that, it groups the vertices with identical labels as following. If there is

at least one vertex with label 〈pre(u), preR(v)〉, then it tests the condition to include

the vertices u and v as following. If d(v) = u then it include v in C(u,v), similarly,

if dR(u) = v then it include u in C(u,v). Furthermore, for the two distinct labels of
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〈pre(u), preR(v)〉, it numbers the corresponding set C(u,v). Later on, these numbers

are used to make the partition of adjacency list for each vertex, which represents the

subgraphs of G(u,v). Each recursive call runs linear time O(V +E) [44], where V and

E are the sizes of the vertices and edges of the input graph. The depth of the recursion

is at most n, and the total size of all subgraphs constructed in Step 3 in each recursion

level is O(m) so that full time bound of this algorithm is O(mn).

6.3.2 Hierarchical Graph Sparsification

Henzinger et al. [85] introduced the hierarchical graph sparsification for undirected

graphs. Chatterjee et al. [34] and Chatterjee and Henzinger [33] extended this technique

for directed graph and game graphs respectively. The sparsification technique allows to

replace the ‘m’ in the O(mn) running time by an ‘n’, yielding O(n2). In this sub-section,

we are going to discuss the algorithm presented by Henzinger et al. [84] refer as HKL,

which follows the sparsification methodology to compute the 2VCC.

2-isolated sets. Henzinger et al. [84] define a 2-isolated set (2-IS) of a digraph G =

(V,E), where G is not necessarily strongly connected, to be a set of vertices S⊆V that

(a) cannot be reached by the vertices of V \ S or (b) can be reached from V \ S only

through one vertex v. Every 2-vertex-connected component of G contains either only

vertices of S∪{v} or only vertices of V \ S. Hence, if such a set S is found, we can

compute recursively the 2-vertex-connected components in the subgraphs induced by

S∪{v} and V \S respectively. Moreover, the set S also called the top strongly connected

component tSCC such that either it doesn’t have any incoming edges from the vertex

v ∈ V \ S or has the incoming edges only through a single vertex v /∈ S. Furthermore,

Henzinger et al. [84] extend the definition of tSCC through the following definitions

and lemmas.

Definition 6.3.3. A set of vertices T induces an almost tSCC in G with respect to a

vertex v if G[T ] is a tSCC in G \ {v} but has incoming edges from v in G (Henzinger

et al. [84]).
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As like a tSCC, any digraph G may also have contained the bottom strongly con-

nected components bSCC such that the vertex set S either don’t have any outgoing edges

to the vertex v ∈V \S or edges are going out only through a single vertex v /∈ S. So, if

the graph has the bottom strongly connected components, then they would become the

tSCCs in reverse graph.

almost

top SCC top SCC only SCC

Blue vertices 𝐵𝐺,𝑖

White vertices 𝐴𝐺,𝑖

𝑟𝐺,𝑖

…𝑏1 𝑏2 𝑏3 𝑏𝑛

𝑣1 𝑣2 𝑣3
almost

top SCC

Figure 6.3: Example of blue vertices, white vertices and (almost) top strongly connected
component.

Let Gh = (Vh,Eh) be a subgraph of a directed graph G = (V,E), i.e., Vh ⊆ V and

Eh ⊆ G[Vh] and h denotes the index of specific subgraphs. Let v be a vertex such that

there exist an almost tSCC w.r.t. v in G. Now, our goal is to identify that vertex v in

graph G, for that we have to define flow graph created from Gh with an auxiliary root

and then identify the v as a vertex-dominator in a flow graph. Let AG,h ⊆ V (G) be the

set of white vertices for which we have the guarantee that for each vertex in AG,h its

incoming edges in Gh are the same as in G. Similarly, Let BG,h =Vh \AG,h be the set of

blue vertices such that they might miss incoming edges in Gh compared to G. We have

to show that as long as the vertices in the almost tSCC are white, i.e., are not missing

incoming edges in Gh, an almost tSCC w.r.t. a vertex v in Gh is an almost tSCC w.r.t. v

in G and vice versa. Figure 6.3 helps to visualize the set of tSCCs.

Definition 6.3.4. For a given subgraph Gh = (Vh,Eh) of a directed graph G = (V,E)

and a set of blue vertices BG,h that contains all vertices that have fewer incoming edges

in Gh than in G, we define the flow graph FG,h(rG,h) as follows. If |BG,h|≥ 2, let FG,h

be the graph Gh with an additional vertex rG,h and an additional edge from rG,h to
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Chapter 6. 2-Vertex-Connected Components

each vertex in BG,h. If BG,h contains a single vertex, we name it rG,h and let FG,h = Gh

(Henzinger et al. [84]).

The above definitions and following three lemmas lead us to find the 2VCCs of a

directed graph in O(n2) time. The proofs are available in Henzinger et al. [84].

Lemma 6.3.5. A set of white vertices T ⊆ AG,h induces a tSCC in Gh and FG,h, respec-

tively, if and only if it induces a tSCC in G (Henzinger et al. [84]).

Lemma 6.3.6. A set of white vertices T ⊆ AG,h induces an almost tSCC with respect to

a vertex v ∈V in Gh and FG,h, respectively, if and only if it induces an almost tSCC with

respect to v in G (Henzinger et al. [84]).

Lemma 6.3.7. Assume BG,h 6= /0, let T ⊆ AG,h be a set of white vertices, and let v ∈ V

be such that there exists an almost tSCC G[T ] with respect to v in G. If v is either not

in BG,h and can be reached from a vertex of BG,h or v is in BG,h and |BG,h|≥ 2, then v is

a dominator in FG,h(rG,h) (Henzinger et al. [84]).

Explanation: Let G = (V,E) be a directed graph and Gi = (V,Ei) be the subgraphs

of G, where i ∈ N and Ei contains first 2i incoming edges in E for each vertex of v ∈V .

If i ≥ log(maxv∈V IndegG(v)), then Gi = G. Let γ = min (maxv∈V IndegG(v),maxv∈V

OutdegG(v)). Following Definition 6.3.4, let a set BG,i contains all vertices that have

in-degree more than 2i in G (i.e., blue vertices), and a set W has contains all vertices that

have the less than or equal to 2i incoming edges in G (i.e., white vertices). We search

a set S ⊆W such that G[S] be the tSCC or almost tSCC with respect to some vertex

v. We can find a set S by searching for SCCs and vertex-dominators in the graphs FG,i

constructed from Gi with the artificial root rG,i. Similarly, to find bSCCs or almost

bSCCs, we have to search for the tSCCs or almost tSCCs in in Rev(G).

Now, we are going to expalin the detail steps of the algorithm, incorporated in the

Procedures HKL, 2IsolatedSetLevel, and 2IsolatedSet that are taken from Henzinger

et al. [84]. We start the search for (almost) top SCCs at i = 1 from the Procedure HKL.

If the search is not successful, then we increase i by one, and search again. The process

138



6.3. Algorithms

Procedure HKL(G)

1 for i← 1 to dlogγe−1 do
2 (S,Z)← 2IsolatedSetLevel(G, i)

/* Z contains v if G[S] is almost top or bottom SCC w.r.t. v */

3 if S 6= /0 then
4 return HKL(G[S∪Z]) ∪ HKL(G[V \S])

5 (S,Z)← 2IsolatedSetLevel(G)
6 if S 6= /0 then
7 return HKL(G[S∪Z]) ∪ HKL(G[V \S])

8 else
9 return {G}

Procedure 2IsolatedSetLevel(G, i)

1 foreach G ∈ {G,Rev(G)} do
/* 2i < maxv∈V IndegG(v) =⇒ BG,i 6= /0 */

2 construct Gi = (V,Ei) with Ei = ∪v∈V
{

first 2i edges in InG(v)
}

3 BG,i =
{

v | IndegG(v)> 2i}
4 S← TopSCCWithout(Gi,BG,i)
5 if S 6= /0 then
6 return (S, /0)

7 if |BG,i|= 1 and ∃ tSCC (V \{rG,i} in Gi \{rG,i} then
8 S← TopSCC (Gi \{rG,i})
9 return (S,{rG,i})

10 construct flow graph FG,i(rG,i)
11 if exists vertex-dominator v ∈ FG,i(rG,i) then
12 S← TopSCCWithout(Gi \{v} ,BG,i)
13 return (S,{v})

14 return ( /0, /0)

is going to continue until we will get Gi = G or Rev(G)i = Rev(G). To search the tSCC

or bSCC, Procedure 2IsolatedSetLevel will be executed as long as 2i < γ, i.e., both BG,i

and BRev(G),i are non-empty. If the Procedure 2IsolatedSetLevel can not find any top

or bottom SCC, then the Procedure 2IsolatedSet will be executed. By using the known

procedures that find the SCCs and articulation points in linear time such as algorithm

by Tarjan [154] or by Gabow [60], Procedure 2IsolatedSet identifies the (almost) tSCC
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Procedure 2IsolatedSet(G)

1 S← TopSCC(G)
2 if S (V then
3 return (S, /0)

4 if exists articulation point v in G then
5 S← TopSCC(G\{v})
6 return (S,{v})
7 return ( /0, /0)

or bSCC in G. Thus, the Procedure 2IsolatedSet may be used up to i∗ time to identify

an (almost) top or bottom SCC in G, the identified subgraph contains Ω(2i∗) vertices,

where i∗ = dlogγe for Procedure 2IsolatedSet. The search in Gi and Rev(G)i for i up to

i∗ takes time O(n.2i∗) which is O(n. min{|S|, |V \S|}). Hence, the algorithm allows us

to bound the total running time by O(n2).

Let Gi ∈ {Gi,Rev(G)i}, Procedure 2IsolatedSetLevel first searches for a tSCC in Gi

such that it does not contain any vertex of BG,i. It used the Procedure TopSCCWithout

(H,B) to denote the search for a tSCC induced by vertices S in a graph H such that

S does not contain a vertex of B. If Gi does not have any such tSCC, then according

to the size of of BG,i, it has two different cases. (i) It consider the special case for

|BG,i|= 1, and searches for tSCC ( V in G. (ii.) It constructs a flow graph FG,i(rG,i)

with artifical root rG,i for the blue vertices, and searches for the vertex-dominators. If it

finds a vertex-dominator v such that there exist the tSCCs in Gi \{v}. Then it will stop

to find other tSCCs.

If the Procedure 2IsolatedSetLevel does not find any 2-isolated sets (i.e. (almost)

tSCC or (almost) bSCC) in G, then it searches such sets in G by executing the Procedure

2IsolatedSet. At first, Procedure 2IsolatedSet searches the proper subgraphs which are

2-isolated in G. If its find such set then it will stop to search. Otherwise, it collects all

the strong articulation point (SAP) of G. If it find any strong articulation point v, then

we already knew that the removal of a SAP disjoints the G into two different 2-isolated

sets (tSCC and bSCC). Therefore, in this case, Procedure 2IsolatedSet returns a tSCC
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in G\{v}. But, if G does not have any articulation points, then by definition, G is itself

2VCC.

6.3.3 Hybrid Algorithm

A simple observation that may help to speed up HKL. When HKL compute strongly

connected components in some subgraph constructed by the hierarchical sparsification

and call the Procedure 2IsolatedSet then we can search many 2-isolates sets. Therefore,

instead of recursing on the partition defined by only one of these sets, we can recurse

on all 2-isolated subgraph induced by these sets. Thus, at the point when HKL searches

for a 2-isolated set of type (b), we can employ one iteration of DTD in order to refine

further the strongly connected subgraphs induced by such 2-isolated sets. We refer to

this algorithm as HKL-DTD.

6.4 Experimental Analysis

We perform the empirical observations between the algorithms that we just discussed

before, DTD, HKL and HKL-DTD. All the algorithm is implemented in C++ without using

any external graphs library. Moreover, as like in 2ECB (Chapter 4) and 2VCB (Chapter

5 ) computations, all of the algorithms used the uniform data structures to represent the

graphs. Furthermore, the development framework (64−bit Ubuntu 14.04LTS system,

g++ v.4.8.4 compiler and compiled with full optimization flag (-O3), measured CPU

running time by getrusage function, and memory consumption by Valgrind † (v.3.11)

) and the hardware configuration of a testing machine (3696MHz Intel i7-4790 octa-core

processor, 16GB of RAM, 16MB of L3 cache, and each core has a 2MB private L2 cache)

are also completely identical to the 2ECB and 2VCB computations.

As well as we used the same testing datasets of 2ECB and 2VCB computations,

where we choose the graphs from different domains (mostly taken from the 9th DI-

MACS implementation challenge [43], and from the Stanford Large Network Dataset

Collection [107]). The characteristics of those graphs for 2VCC are summarized in

†http://valgrind.org/
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Graphs 2VCCs

Name Type n = |V (G)| m = |E(G)| Max-size Avg-size Total #

p2p-Gnutella31 P2P 14.1K 50.9K 0.0K 0.0 0

web-NotreDame WG 54.0K 296.2K 1.5K 20.2 893

soc-Epinions1 SN 32.2K 443.5K 17.1K 84.9 210

Amazon0302 PCP 241.8K 1.1M 55.4K 7.8 19789

WikiTalk SN 111.9K 1.5M 49.4K 1768.5 28

web-Stanford WG 150.5K 1.6M 10.9K 16.4 2936

Amazon0601 PCP 395.2K 3.3M 276.0K 35.0 9341

web-Google WG 434.8K 3.4M 77.5K 12.3 15957

web-BerkStan WG 334.9K 4.5M 29.1K 15.7 8104

SAP-4M MP 4.1M 11.9M 2.5K 15.1 1883

Oracle-6M MP 6.4M 15.9M 3.6K 9.6 47430

SAP-11M MP 11.1M 36.4M 6.3K 20.1 1479

USA-USA RN 23.9M 57.7M 16.0M 148.8 112780

LiveJournal SN 3.8M 65.3M 2.9M 153.7 19202

SAP-32M MP 32.3M 81.8M 6.6K 10.2 7265

SAP-70M MP 69.7M 215.7M 7.0K 13.9 10630

Table 6.1: The characteristics of the real-world graphs that we considered; n and m
refers to the number of vertices and the number of edges, respectively.Graph types are
encoded as follows: road network (RN), peer to peer (P2P), web graph (WG), social
network (SN), production co-purchase (PCP), memory profiling (MP). The graphs are
sorted in increasing order according to their number of edges. Additionally, we report
the statistics of their 2-vertex-connected components, whose size refers to the number
of their vertices.

Table 6.1. Also, to analyze the performance of the algorithms in more depth, we had

generated the random graphs with specific properties presented in Table 6.3. We aver-

aged the running time of our experiments over ten different runs.

We apply the algorithms DTD, HKL and HKL-DTD over the datasets presented in

Table 6.1 to start our experimental analysis. At first, we compared their running time
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Figure 6.4: Running times per edge in µs (top) and Memory usage per edge in Bytes
(bottom) of the algorithms DTD, HKL and HKL-DTD on the real world graph datasets
presented in Table 6.1. (Better viewed in color.)

and then the memory consumption. Figure 6.4 plots the report, running time (on top)

and memory (on the bottom). The full data of the experiments are reported in Table

6.2. As it can be seen from Figure 6.4 (top), on average DTD was 3 orders of magnitude

faster than HKL and HKL-DTD.

Also, on average, HKL-DTD is 4.64% faster than HKL. Hence, incorporating the

dominator tree division technique in HKL improved its performance, but only slightly.

This happened because HKL attempts first to find 2-isolated sets by running a strongly

connected components computation, and uses dominators only if this step fails. There-

fore, in our experiments, the dominators computation did not frequently occur enough

to provide larger speed-ups. Table 6.5 gives the solid evident for such character by

summarizing the recursion depth level of each algorithm. Furthermore, we expand the
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Graphs
Running times in seconds Memory consumption in MBytes

DTD HKL HKL-DTD DTD HKL HKL-DTD

p2p-Gnutella31 0.02 0.05 0.05 1.9 2.8 2.8

web-NotreDame 0.05 1.17 1.14 8.2 11.4 11.4

soc-Epinions1 0.11 0.38 0.38 7.5 11.5 11.5

Amazon0302 1.04 624.81 16.78 35.1 50.5 50.5

WikiTalk 0.42 1.06 1.08 25.2 38.8 38.8

web-Stanford 0.32 59.58 58.83 28.5 37.7 37.7

Amazon0601 2.46 788.46 24.84 69.7 104.3 104.3

web-Google 2.19 96.55 95.73 73.8 100.5 100.5

web-BerkStan 0.98 35.34 34.10 77.0 91.6 91.6

SAP-4M 1.36 296.86 296.05 542.9 764.2 764.2

Oracle-6M 2.06 158.64 155.62 826.1 1100.0 1100.0

SAP-11M 4.12 1681.73 1672.22 1500.0 2100.0 2100.0

USA-USA 17.11 5033.83 4977.68 3300.0 4500.0 4500.0

LiveJournal 89.86 1702.52 1698.14 1100.0 1600.0 1600.0

SAP-32M 10.88 14945.90 14368.10 4100.0 5800.0 5800.0

SAP-70M 29.07 56620.50 55635.10 9100.0 12800.0 12800.0

Table 6.2: Running times in seconds and Memory consumption in MBytes respectively
of the algorithms for computing the 2-vertex-connected components executed on the
real world graphs of Table 6.1

Table 6.5 to the Tables 6.6 and 6.7. The data presented in Table 6.6 and 6.7 are plotted

by Figure 6.5 (top) and (bottom) respectively.

Tables 6.6 and 6.7 show that the HKL and HKL-DTD have many overhead calls be-

cause they continuously tried to search the find 2-isolated sets by increasing in incoming

edges of the vertices. However, as we can see HKL-DTD has the less overhead calls as

compared to HKL in some graphs because it uses the DTD technique when it came to

finding the 2-isolated sets in a whole graph. It helps to boost the running time for some

graphs for example “Amazon302”, where HKL-DTD has 17860 number of less overhead
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Figure 6.5: Splits of the recursion steps of the algorithms HKL (top) and HKL-DTD
(bottom) over the real world graph presented in Table 6.1. (Better viewed in color.)

call then HKL. Therefore, for the graph “Amazon302”, HKL-DTD was 2 order of mag-

nitude faster than HKL. We remark that both the algorithms have the equal number of

overhead call in G because it happens only when the graph is 2 vertex-connected and

all the algorithms output the same number of 2VCCs.

After all, the hierarchical sparsification process is applied to every graph even if the

graph is 2VCC. To observe this character of these algorithms, we create the 2-vertex-

connected random graphs with constant number vertices and different edges to vertex
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Figure 6.6: Running times per edge in µs (top) and memory usage per edge in Bytes
(bottom) of the algorithms DTD, HKL and HKL-DTD on the random graphs summarized
in Table 6.3. (Better viewed in color.)

ratio that varies from 11 to 536. The experimental results of these random graphs are

provided in Table 6.3. Figure 6.6 (top) and (bottom) plots the performance in running

time and the required memory storage respectively, to compute the random graphs. Our

experimental observations report show that, on average, DTD is 3 times faster than HKL

and HKL-DTD. Theoretically, HKL and HKL-DTD should give the same performance for

such 2-vertex-connected random graphs. The experimental observation also reported

the same result (with the negligible difference). As we can see that HKL and HKL-DTD

have the equal number of unnecessary overhead call given by Table 6.8 and expended

by Table 6.9 for HKL and 6.10 for HKL-DTD. Also, Figure 6.7 (top) and (bottom) plots

the overhead call of HKL and HKL-DTD respectively. Furhtermore, we noticed that the

overhead call is directly proportional to the edge to vertex ratio (which should be in

theory as well).

In general, real world graphs are sparse. The experimental report showed that, if the

graph is sparse then there are too many strong articulation points exist as well as m is
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Graphs (n = 100K) Running times in seconds Memory in MBytes

Name m DTD HKL HKL-DTD DTD HKL HKL-DTD

Rand-11D 1.1M 0.18 0.61 0.62 26.9 63.1 63.1

Rand-17D 1.7M 0.27 0.90 0.90 36.2 81.7 81.7

Rand-23D 2.3M 0.32 0.95 0.98 45.6 108.3 108.3

Rand-33D 3.3M 0.42 1.02 1.02 59.5 134.8 134.8

Rand-39D 3.9M 0.44 1.52 1.53 68.8 154.9 154.9

Rand-45D 4.5M 0.49 1.49 1.51 78.2 189.5 189.5

Rand-54D 5.4M 0.55 1.66 1.67 92.1 217.3 217.3

Rand-60D 6.0M 0.60 1.79 1.82 101.4 235.2 235.2

Rand-66D 6.6M 0.63 1.53 1.54 110.8 251.9 251.9

Rand-75D 7.5M 0.70 1.58 1.56 124.7 274.5 274.5

Rand-109D 10.9M 0.91 2.78 2.76 175.9 417.0 417.0

Rand-145D 14.5M 1.11 2.93 2.86 231.8 516.0 516.0

Rand-182D 18.2M 1.26 2.80 2.80 287.7 600.2 600.2

Rand-216D 21.6M 1.40 4.69 4.68 338.9 807.1 807.1

Rand-252D 25.2M 1.60 5.40 5.39 394.8 915.6 915.6

Rand-286D 28.6M 1.78 5.53 5.57 446.0 999.1 999.1

Rand-322D 32.2M 1.98 5.94 5.89 501.9 1126.4 1126.4

Rand-359D 35.9M 2.17 4.36 4.37 557.8 840.2 840.2

Rand-393D 39.3M 2.31 4.80 4.76 609.0 917.0 917.0

Rand-429D 42.9M 2.49 9.37 9.21 664.9 1536.0 1536.0

Rand-466D 46.6M 2.72 10.17 10.15 720.8 1740.8 1740.8

Rand-499D 49.9M 2.84 10.75 10.58 772.0 1843.2 1843.2

Rand-536D 53.6M 2.97 10.82 10.67 827.8 1843.2 1843.2

Table 6.3: The characteristics of random graphs, where we keep fixed the number of
vertices to 100K and increase the edge density.

closer to n. Therefore DTD decomposed the graphs into 2 vertex-connected components

very quickly. On the other hand, if the graph is dense (random graphs), then the chances
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Figure 6.7: Splits of the recursion steps of the algorithms HKL (top) and HKL-DTD
(bottom) over the real world graph presented in Table 6.3. (Better viewed in color.)

of a graph to be a 2-vertex-connected is very high. In this case, HKL and HKL-DTD

have many overhead calls (even if the graph is not a 2-vertex-connected) that cost the

algorithms to slow down on their performance. In terms of memory, Figure 6.4 (bottom)

shows that, on average, DTD requires almost 29% less memory than HKL and HKL-

DTD for the real world graphs. It also shows that both algorithms, HKL and HKL-DTD

require the same amount of memory to perform the computation on real world graphs.

Similarly, for the 2-vertex-connected random graphs, Figure 6.6 (bottom) shows that

both HKL and HKL-DTD need the same amount of memory, but need 2.17 times extra

memory storage than DTD.

Furthermore, in order to understand the complicated nature of HKL, such that it

may have an advantage over DTD, we created a family of dense worst-case instances,

shown in Figure 6.8, that we refer to as DTD-BAD. We denote by DTD-BAD(n) the n-
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𝑥5 𝑥2𝑥3𝑥4 𝑥1

𝑦5 𝑦4 𝑦3 𝑦2 𝑦1

𝑠

𝑥2𝑥3𝑥4 𝑥1

𝑦4 𝑦3 𝑦2 𝑦1

𝑠

DTD-BAD(5) DTD-BAD(4)

Figure 6.8: A family of digraphs, DTD-BAD, that elicits the worst-case behavior of
algorithm DTD. Digraph DTD-BAD(n) has 2n+ 1 vertices and n(n− 1)/2+ 5n edges.
A double-headed arrow corresponds two parallel but oppositely directed edges. The
vertices x1,x2, . . . ,xn are connected by all edges (xi,x j) for i < j. Vertex yn (shown in
red) is the only strong articulation point of DTD-BAD(n), which when deleted leaves
two strongly connected components: an isolated vertex xn and DTD-BAD(n−1).

2VCC : DTD-BAD Nature

Graph details Running time details No. of recursive calls

Name n m α β γ α β γ

DTD-BAD(4K) 4K 2M 36.1 7.2 7.1 1997 3998 3998

DTD-BAD(5K) 5K 3.1M 71.1 14.0 14.0 2497 4998 4998

DTD-BAD(6K) 6K 4.5M 124.0 24.0 24.0 2997 5998 5998

DTD-BAD(7K) 7K 6.1M 195.1 37.7 37.9 3497 6998 6998

DTD-BAD(8K) 8K 8M 289.0 56.2 56.3 3997 7998 7998

DTD-BAD(9K) 9K 10.1M 413.4 78.9 79.4 4497 8998 8998

DTD-BAD(10K) 10K 12.5M 561.7 111.4 112.8 4997 9998 9998

Table 6.4: The characteristics of 7 different DTD-BAD graphs, and the running times (in
seconds) and the number of recursive calls performed by the algorithms DTD, HKL and
HKL-DTD denoted by α, β and γ respectively.

graph in this family, that has 2n+ 1 vertices and n(n− 1)/2+ 5n edges. Observe that

DTD-BAD(n) has a unique strong articulation point, vertex yn, which when removed,

leaves two strongly connected components: an isolated vertex xn and DTD-BAD(n−1).

Hence, both HKL and DTD will require O(n) recursive calls to process DTD-BAD(n). For

149



Chapter 6. 2-Vertex-Connected Components

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1+e7

D
T

D
-B

A
D

(4
K

)

D
T

D
-B

A
D

(5
K

)

D
T

D
-B

A
D

(6
K

)

D
T

D
-B

A
D

(7
K

)

D
T

D
-B

A
D

(8
K

)

D
T

D
-B

A
D

(9
K

)

D
T

D
-B

A
D

(1
0
K

)

R
u

n
n

in
g
 t

im
e
 p

e
r 

e
d
g
e

 (
in

 µ
s
)

Number of edges (in log scale)

DTD

HKL

HKL-DTD

Figure 6.9: DTD-BAD nature graphs.

those graphs, HKL achieves superior performance compared to DTD, since hierarchical

sparsification pays off, and it locates a 2-isolated set faster. In this case, the process

never reached to the Procedure 2IsolatedSet so that the algorithms HKL and HKL-DTD

have the equal running time. Table 6.4 presents the statistics of DTD-BAD graphs and

Figure 6.9 plots the corresponding running times of algorithms. It shows that HKL is

5.13 times faster than DTD on average.
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Graphs
number of recursive calls

DTD HKL HKL-DTD

Oracle-10K 8 177 171

p2p-Gnutella31 5 318 285

web-NotreDame 13 9692 6167

soc-Epinions1 4 332 332

Amazon0302 17 101367 72188

WikiTalk 4 78 78

web-Stanford 15 27684 23090

Amazon0601 6 38120 31359

web-Google 11 99357 98441

web-BerkStan 18 53466 51066

SAP-4M 6 57656 19331

Oracle-6M 21 176118 140304

SAP-11M 3 240868 76972

USA-USA 1 305424 305424

LiveJournal 6 38178 38178

SAP-32M 7 166049 0

Table 6.5: Total recursive calls of each algorithm to compute the 2VCCs for the real
world graphs presented in Table 6.1. For the algorithms HKL and HKL-DTD, total re-
cursive calls are the sum of total execution of the Procedures 2IsolatedSetLevel and
2IsolatedSet respectively. The details steps for HKL and HKL-DTD are presented in
Tables 6.9 and 6.10 respectively.
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Graphs

Recursion Details of HKL

Call for
2-IS in

Gi

2-IS
from
Gi

Overhead
call in

Gi

Call for
2-IS in

G

2-IS
from

G

Overhead
call in G

Oracle-10K 165 121 44 12 9 3

p2p-Gnutella31 268 161 107 50 50 0

web-NotreDame 7779 615 7164 1913 1268 645

soc-Epinions1 286 47 239 46 1 45

Amazon0302 84381 12198 72183 16986 4378 12605

WikiTalk 72 19 53 6 0 6

web-Stanford 23633 4898 18735 4051 1759 2292

Amazon0601 32195 1350 30845 5925 857 5068

web-Google 86048 7678 78370 13309 561 12748

web-BerkStan 45709 3321 42388 7757 1005 6751

SAP-4M 41795 8604 33191 15861 14593 1268

Oracle-6M 122877 4024 118853 53241 18786 34455

SAP-11M 162755 6069 156686 78113 77193 920

USA-USA 228184 856 227328 77240 0 77240

LiveJournal 32139 833 31306 6039 33 6006

SAP-32M 114821 9334 105487 51228 45611 5617

Table 6.6: Recursion details of the HKL algorithm over the real world graphs presented
in Table 6.1. It shows that the total and overhead calls to the Procedures 2Isolated-
SetLevel and 2IsolatedSet respectively for 2-IS.
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Graphs

Recursion Details of HKL-DTD

Call for
2-IS in

Gi

2-IS
from
Gi

Overhead
call in

Gi

Call for
2-IS in

G

2-IS
from

G

Overhead
call in G

Oracle-10K 161 121 40 10 7 3

p2p-Gnutella31 246 161 85 39 39 0

web-NotreDame 5429 614 4815 738 93 645

soc-Epinions1 286 47 239 46 1 45

Amazon0302 59074 4748 54326 13114 509 12605

WikiTalk 72 19 53 6 0 6

web-Stanford 20553 4891 15662 2537 245 2292

Amazon0601 26254 652 25602 5105 37 5068

web-Google 85422 7653 77769 13019 271 12748

web-BerkStan 44042 3270 40772 7024 273 6751

SAP-4M 16245 8604 7641 3086 1818 1268

Oracle-6M 98992 4009 94983 41312 6857 34455

SAP-11M 53491 6069 47422 23481 22561 920

USA-USA 228184 856 227328 77240 0 77240

LiveJournal 32139 833 31306 6039 33 6006

SAP-32M 0 0 0 0 0 0

Table 6.7: Recursion details of the HKL-DTD algorithm over the real world graphs pre-
sented in Table 6.1. It shows that the total and overhead calls to the Procedures 2Isolat-
edSetLevel and 2IsolatedSet respectively for 2-IS.

153



Chapter 6. 2-Vertex-Connected Components

Graphs
number of recursive calls

DTD HKL HKL-DTD

Rand-11D 0 9 9

Rand-17D 0 11 11

Rand-23D 0 11 11

Rand-33D 0 11 11

Rand-39D 0 13 13

Rand-45D 0 13 13

Rand-54D 0 13 13

Rand-60D 0 13 13

Rand-66D 0 13 13

Rand-75D 0 13 13

Rand-109D 0 15 15

Rand-145D 0 15 15

Rand-182D 0 15 15

Rand-216D 0 17 17

Rand-252D 0 17 17

Rand-286D 0 17 17

Rand-322D 0 17 17

Rand-359D 0 17 17

Rand-393D 0 17 17

Rand-429D 0 19 19

Rand-466D 0 19 19

Rand-499D 0 19 19

Rand-536D 0 19 19

Table 6.8: Total recursive calls of each algorithm to compute the 2VCCs for random
graphs presented in Table 6.3. For the algorithms HKL and HKL-DTD, total recursive
calls are the sum of total executions of the Procedures 2IsolatedSetLevel and 2Isolat-
edSet. The details steps for HKL and HKL-DTD are presented in Tables 6.9 and 6.10
respectively.
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Graphs

Recursion Details of HKL

Call for
2-IS in

Gi

2-IS
from
Gi

Overhead
call in

Gi

Call for
2-IS in

G

2-IS
from

G

Overhead
call in G

Rand-11D 8 0 8 1 0 1

Rand-17D 10 0 10 1 0 1

Rand-23D 10 0 10 1 0 1

Rand-33D 10 0 10 1 0 1

Rand-39D 12 0 12 1 0 1

Rand-45D 12 0 12 1 0 1

Rand-54D 12 0 12 1 0 1

Rand-60D 12 0 12 1 0 1

Rand-66D 12 0 12 1 0 1

Rand-75D 12 0 12 1 0 1

Rand-109D 14 0 14 1 0 1

Rand-145D 14 0 14 1 0 1

Rand-182D 14 0 14 1 0 1

Rand-216D 16 0 16 1 0 1

Rand-252D 16 0 16 1 0 1

Rand-286D 16 0 16 1 0 1

Rand-322D 16 0 16 1 0 1

Rand-359D 16 0 16 1 0 1

Rand-393D 16 0 16 1 0 1

Rand-429D 18 0 18 1 0 1

Rand-466D 18 0 18 1 0 1

Rand-499D 18 0 18 1 0 1

Rand-536D 18 0 18 1 0 1

Table 6.9: Recursion details of HKL algorithm for random graphs presented in Table
6.3. It shows that the total and overhead calls to the Procedures 2IsolatedSetLevel and
2IsolatedSet respectively for 2-IS.
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Graphs

Recursion Details of HKL-DTD

Call for
2-IS in

Gi

2-IS
from
Gi

Overhead
call in

Gi

Call for
2-IS in

G

2-IS
from

G

Overhead
call in G

Rand-11D 8 0 8 1 0 1

Rand-17D 10 0 10 1 0 1

Rand-23D 10 0 10 1 0 1

Rand-33D 10 0 10 1 0 1

Rand-39D 12 0 12 1 0 1

Rand-45D 12 0 12 1 0 1

Rand-54D 12 0 12 1 0 1

Rand-60D 12 0 12 1 0 1

Rand-66D 12 0 12 1 0 1

Rand-75D 12 0 12 1 0 1

Rand-109D 14 0 14 1 0 1

Rand-145D 14 0 14 1 0 1

Rand-182D 14 0 14 1 0 1

Rand-216D 16 0 16 1 0 1

Rand-252D 16 0 16 1 0 1

Rand-286D 16 0 16 1 0 1

Rand-322D 16 0 16 1 0 1

Rand-359D 16 0 16 1 0 1

Rand-393D 16 0 16 1 0 1

Rand-429D 18 0 18 1 0 1

Rand-466D 18 0 18 1 0 1

Rand-499D 18 0 18 1 0 1

Rand-536D 18 0 18 1 0 1

Table 6.10: Recursion details of the HKL-DTD algorithm for random graphs presented in
Table 6.3. It shows that the total and overhead calls to the Procedures 2IsolatedSetLevel
and 2IsolatedSet respectively for 2-IS.
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7
Critical Nodes Detection

7.1 Introduction

In many applications in network analysis we wish to identify the nodes of a network that

are important for a specific task, where the definition of “importance” varies accordingly

to the application at hand. Problems of this type have received a lot of attention recently:

for example, one may wish to identify nodes that represent highly influential individu-

als in a social network [96], or locations in a network that are useful in order to inhibit

diffusion of contagions [18, 105], or to assess network vulnerabilities [146]. Motivated

by the recent study of Ventresca and Aleman [168], we consider the problem of detect-

ing a set S of critical nodes such that G\S has minimum pairwise strong connectivity.

This problem is NP-hard [16, 46], and thus we are interested in practical heuristics. As

noted in [16], the critical node detection problem has, in particular, several applications

in the field of social network analysis. In the recent years, social networks have been the

subject of significant amount of research, aiming to better understand several properties

such as cohesion, transitivity, and centrality of specific actors [21]. Other applications

of critical nodes include network immunization [37], and the study of covert terrorist

networks [103].

Let G = (V,E) be a directed graph (digraph), with m edges and n vertices. Two

vertices u and v of G are strongly connected if there is a (directed) path from u to v and

a (directed) path from v to u. Digraph G is strongly connected if every two vertices are

strongly connected. The strongly connected components of G are its maximal strongly

connected subgraphs. Clearly, two vertices u and v are strongly connected if and only

if they belong to the same strongly connected component (SCC) of G. The size |C| of a

strongly connected component C of G is given by its number of vertices. A vertex of G
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is a strong articulation point if its removal increases the number of strongly connected

components. Note that strong articulation points are 1-vertex cuts for digraphs. Let

G \ v denote the digraph obtained after deleting vertex v together with all its incident

edges. Similarly, for a set of vertices S, we let G \ S denote the digraph obtained after

deleting all vertices in S and their incident edges.

Let G be a directed graph, and let C1,C2, . . . ,C` be its strongly connected compo-

nents. Let the size |Ci| of a strongly connected component Ci is given by its number of

vertices. We define the connectivity value of G as

f (G) =
`

∑
i=1

(
|Ci|
2

)
.

𝒇 𝑮𝟏 =
𝟗

𝟐
= 𝟑𝟔

4

2
= 6

3

2
= 3

2

2
= 1

𝒇 𝑮𝟑 = 𝟔 + 𝟑 + 𝟏 = 𝟏𝟎
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2
= 10
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2
= 6

𝒇 𝑮𝟐 = 𝟏𝟎 + 𝟔 = 𝟏𝟔

Figure 7.1: Connectivity value of graphs G1,G2 and G3. Even though all of them have
the equal number of vertices, their connectivity value are different according to the size
and number of SCCs they have.

Note that, f (G) equals the number of vertex pairs in G that are strongly connected.

Two vertices are strongly connected if they are mutually reachable from each other.

For example, as shown in Figure 7.1, three different graphs G1,G2, and G3 has the

equal number of vertices, but their connectivity value f (G) are not equal each other,

because f (G) of a graph depends on the numbers and sizes of SCCs. As we can see in

Figure 7.1, G1 has only one SCC of size 9, so, f (G1) =

(
9
2

)
= 36, whereas G2 has two

different SCCs of size 4 and 5, therefore, f (G2) =

(
4
2

)
+

(
5
2

)
= 16. Similarly, G3 has
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three different SCCs of size 2,3 and 4, implies that, f (G3) =

(
2
2

)
+

(
3
2

)
+

(
4
2

)
= 10.

We wish to compute a set S ⊆ V of vertices such that the connectivity value of the

residual graph G \ S is minimized, i.e., S = min
S⊆V

f (G \ S). In the special case of k = 1,

we wish to locate a vertex x ∈ V such that f (G \ x) is minimum. We refer to such a

vertex x as the most critical node of G. This problem was previously considered in the

literature, but only for undirected graphs (see, e.g., [16, 168]). In particular, Ventresca

and Aleman [168] presented a linear-time algorithm for the k = 1 case in undirected

graphs. Their algorithm exploits the relation between depth-first-search (DFS) and ar-

ticulation points and biconnected components of an undirected graph G [158]. Hence,

they provide a dfs-based algorithm for locating the most critical node of G.

In this chapter, we present a sophisticated linear-time algorithm for the k = 1 case

in directed graphs. That is, given a directed graph G = (V,E) with n vertices and m

edges, we identify the most critical node of G in O(m+ n) time. To the best of our

knowledge, this is the first non-trivial algorithm for detecting the most critical node

of a directed graph, and provides a substantial improvement over the naive solution of

computing f (G \ x) from scratch, for all vertices x. The preliminary version of the al-

gorithm, heuristics that are proposed in this Chapter and the experimental reports were

presented at the “17th International Conference on Algorithm Engineering and Exper-

iments [132]". A journal publication containing all the results is in preparation. As

highlighted by several recent results, connectivity-related problems for digraphs are no-

toriously harder than for undirected graphs, and indeed many notions for undirected

connectivity do not translate to the directed case; see, e.g., [74, 83] (Also see in Chapter

2 - Section 2.3). Our algorithm is based on the recent framework of [75] for answering

strong connectivity queries in a directed graph under an edge or a vertex failure. A

natural extension of this algorithm is to repeatedly remove the most critical node of the

current graph G, until we have removed k vertices. This way, we obtain an efficient

heuristic for the general case that runs in O(k(m+n)) time. We assess the performance

of our algorithms experimentally. We show that the linear-time algorithm performs very

well in practice, while the naive approach of computing f (G\v) for all vertices v is not
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competitive even for very small graphs. Also, our heuristic is shown to achieve much

better fragmentation of the input graph compared to selecting nodes by other popu-

lar heuristics, such as Betweenness Centrality [24], Page Rank [130], and Maximum

Degree.

7.2 Algorithms

In this section, we present our linear-time algorithm for computing the most critical

node in a directed graph G. This algorithm can be extended, in a straightforward man-

ner, to provide an efficient heuristic for the general case of the critical node detection

problem. We first review some fundamental concepts used by our algorithms. Before

going through the algorithm, we suggest that the reader review the notation from Chap-

ters 2 and 3, in particular the notions of flow graphs, dominators, strong articulation

points and loop nesting forests.

Notation. Let Gs (resp., GR
s ) be the flow-graph of G (resp., GR). We denoted the

vertex dominator trees and loop nesting tree of the flow-graph Gs (resp., GR
s ) by D (

resp., DR) and H ( resp., HR) respectively. Moreover, let d(v) (resp., dR(v)) denote the

parent of v 6= s in D (resp., DR) and let C(v) (resp., CR(v)) denote the set of children of

a vertex v in D (resp., DR). Similarly, let D̃(u) represents the set of proper descendants

of a vertex u in D. Let T be a tree rooted at s. If vertex v is an ancestor of vertex w, then

T [v,w] denotes the path from v to w in T ; we let T (v,w) denote the part of T [v,w] from

the child of v that is an ancestor of w to the parent of w. Also, we let T (v) denote the

set of descendants of a vertex v in T , and T̃ (v) the set of proper descendants of v in T ,

i.e., T̃ (v) = T (v)\ v. For a set of vertices S ⊆V , we let G[S] be the subgraph of G that

is induced by S. For simplicity we denote f (S) = f (G[S]).

7.2.1 Linear-Time Algorithm for Most Critical Node.

Here we present our linear-time algorithm, to compute the most critical node of a di-

graph G. Throughout, we refer to this algorithm as MCN (Most Critical Node). We
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assume that G is strongly connected. If this is not the case, then we can execute our

algorithm on each strongly connected component of G separately and pick the vertex

v that minimizes f (G \ v), as follows: If v is the most critical node of a strongly con-

nected component C of G, then f (G\ v) = f (G)− f (C)+ f (C \ v) illustrated in Figure

7.2. Hence, given the most critical nodes of all O(n) strongly connected components of

G, we can choose the most critical node of G in O(n) time.

𝑓 𝐺 ∖ 𝑣 = 1 + 1 + 1 + 10 = 13
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𝑓 𝐺 ∖ 𝑣 = 𝑓 𝐺 − 𝑓 𝐶𝑖 + 𝑓(𝐶𝑖 ∖ 𝑣)

𝑓 𝐺 ∖ 𝑣 = 31 − 21 + 3 = 13

𝑣

Figure 7.2: Compute the connectivity value of a graph after the removal of a vertex.

Our algorithm hinges upon the following key result from [75]:

Theorem 7.2.1. ([75]) Let u be a strong articulation point of G, and let s be an arbitrary

vertex in G. Let C be a strongly connected component of G\u. Then one of the following

cases holds:

(a) If u is a nontrivial dominator in Gs but not in GR
s then either C ⊆ D̃(u) or C =

V \D(u).

(b) If u is a nontrivial dominator in GR
s but not in Gs then either C ⊆ D̃R(u) or C =

V \DR(u).

(c) If u is a common nontrivial dominator of Gs and GR
s then either C⊆ D̃(u)\D̃R(u),

or C ⊆ D̃R(u)\ D̃(u), or C ⊆ D̃(u)∩ D̃R(u), or C =V \ (D(u)∪DR(u)).

(d) If u = s then C ⊆ D̃(u).
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Moreover, if C ⊆ D̃(u) (resp., C ⊆ D̃R(u)) then C = H(w) (resp., C = HR(w)) where w

is a vertex in D̃(u) (resp., D̃R(u)) such that h(w) 6∈ D̃(u) (resp., hR(w) 6∈ D̃R(u)).

𝑃𝐶𝐴 𝑣 =

𝑉 ∖ ( 𝐷 𝑣 ∪  𝐷 𝑣 ) + 𝑃𝐶𝐷(𝑣)

 𝐷𝑅(𝑣) 𝐷(𝑣)

𝑃𝐶𝐷 𝑣 =

 𝐷 𝑣 ∩  𝐷 𝑣

𝑣

Figure 7.3: Overview of the number of SCCs in G\ v. D̃(v) (resp., D̃R(v)) denotes the
proper descendants of v in D (resp., in DR). Similarly, the proper common descendants
(resp., ancestors) of v are represented by PCD(v) (resp., PCA(v) ).

The above theorem provides the means to detect SCCs after the deletion of a vertex.

Our goal is to use this information in order to compute f (G\ v) for each strong articu-

lation point v of G. To do this efficiently, we find a way to compute this function for all

strong articulation points simultaneously.

Let PCD(u) = D̃R(u)∩ D̃(u) and PCA(u) =V \(D(u)∪DR(u)), respectively, be the

set of proper common descendants and the set of proper common ancestors of u in D

and DR. The digrammatic representation of these partitions are presented in Figure 7.3.

We divide the computation of f (G\ v) in four parts:

f (D̃(v)) = ∑
w∈D̃(v),h(w)6∈D̃(v)

(
|H(w)|

2

) �
 �	7.1

f (D̃R(v)) = ∑
w∈D̃R(v),hR(w)6∈D̃R(v)

(
|HR(w)|

2

) �
 �	7.2

f (PCD(v)) = ∑
w∈PCD(v),h(w)6∈D̃(v)

(
|H(w)|

2

) �
 �	7.3
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f (PCA(v)) =
(
|PCA(v)|

2

) �
 �	7.4

The above equalities follow from Theorem 7.2.1. Equations
�
 �	7.1 and

�
 �	7.2 calcu-

late the connectivity values of the subgraphs induced by D̃(v) and D̃R(v), respectively.

Similarly, equations
�
 �	7.3 and

�
 �	7.4 calculate the connectivity values of the subgraphs

induced by PCD(v) = D̃(v)∩ D̃R(v) and PCA(v) = V \ (D(v)∪DR(v)), respectively.

Then, f (G\v) = f (D̃(v))+ f (D̃R(v))− f (PCD(v))+ f (PCA(v)). (See Algorithm 15.)

Algorithm 15: MostCriticalNode
Input: A strongly connected digraph G
Output: Most critical node v of G

1 Compute the reverse digraph GR.
2 Select an arbitrary start vertex s ∈V .
3 Compute the dominator trees D and DR of the flow graphs Gs and GR

s ,
respectively.

4 Compute the sets of nontrivial dominators N and NR of the flow graphs Gs and
GR

s , respectively.
5 Compute the loop nesting trees H and HR of the flow graphs Gs and GR

s ,
respectively.

6 cnode← 0, cvalue← f (G), value← 0
7 foreach strong articulation point v of G do

/* calculate the connectivity value for v */

8 Compute f (D̃(v)), f (D̃R(v)), f (PCD(v)), f (PCA(v))
9 value← f (D̃(v))+ f (D̃R(v))− f (PCD(v))+ f (PCA(v))

/* vertex with minimum value is the most critical node */

10 if cvalue > value then
11 cnode← v
12 cvalue← value

13 return cnode

Next we describe how to perform the computations
�
 �	7.1 –

�
 �	7.4 . To that end we ap-

ply the framework of [75], which provides an efficient way to compute several functions

defined on the decompositions induced by the 1-connectivity cuts (strong articulation

points or strong bridges) of a strongly connected digraph. The pairwise strong connec-

tivity function f (G) that we consider fits within this framework. We remark, however,
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that the computations for vertex-cuts in [75] use a reduction to edge-cuts via vertex-

splitting. Here we provide a direct algorithm that avoids this reduction, and is thus

expected to be faster in practice.

In the following, we assume that we have precomputed the dominator trees D and

DR, and the loop nesting trees H and HR of flow graphs Gs and GR
s . These can be done in

O(m) time [30]. As we show next, given these trees, we can perform the computations�
 �	7.1 –
�
 �	7.4 for all strong articulation points in O(n) total time. Thus, we obtain the

following result:

Theorem 7.2.2. We can compute the most critical node of a directed graph G with n

vertices and m edges in O(m+n) time.

Computing f (D̃(v)) and f (D̃R(v)). Here we describe how to compute f (D̃(v)) for all

strong articulation points v of G. The computation of f (D̃R(v)) is analogous. The main

idea in our algorithm is the following. Suppose C is a SCC in the induced subgraph

G[D̃(v)] for some vertex v. Our goal is to add the corresponding value
(
|C|
2

)
to all

ancestors u of v such that C is also a SCC in G[D̃(u)]. Next we introduce the notion of

a bundle that identifies the appropriate set of these ancestors.

Bundle of vertex v in D: Let u be the lowest ancestor of v in D such that h(v) is a

proper descendant of u (i.e., h(v) ∈ D̃(u)). If u exists, then we define the bundle of v to

be the vertices in the path D[u,v]. See Figure 7.4. Otherwise, if u does not exist, then

h(v) = s and we let the bundle of v to be D[s′,v], where s′ is a dummy vertex that we

think of as the parent of s in D and in DR.

We can locate u with the help of the next lemmata.

Lemma 7.2.3. For any vertex v 6= s, if h(v) 6= s then d(h(v)) dominates v.

Proof. Assume, for contradiction, that the lemma is false. Then, there is a path πsv from

s to v that avoids d(h(v)). By the definition of h(v) function, we have a path πv,h(v) from

v to h(v) that contains only descendants of h(v) in the corresponding dfs tree. Hence,

d(h(v)) 6∈ πv,h(v). But then, πsv · πv,h(v) is a path from s to h(v) that avoids d(h(v)), a
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contradiction.

Lemma 7.2.4. For any vertex v 6= s, if h(v) 6= s then the bundle of v is D[d(h(v)),v].

Proof. Let u be the lowest ancestor of v in D such that h(v) is a proper descendant of

u. Let z be the nearest common ancestor of h(v) and v in D. If h(v) is an ancestor of v

in D then z = h(v) and u = d(z). Otherwise, u = z and by Lemma 7.2.3 we have that

u = d(h(v)).

ℎ(𝑣)

𝑠

𝑣

𝐷

𝑢

bundle of 𝑣

𝑠
𝐷

𝑢 = ℎ(𝑣)

bundle of 𝑣

𝑣

Figure 7.4: Bundle of vertex v in D. In the first case (left), h(v) is not an ancestor of v
in D, while in the second case (right), h(v) is an ancestor of v in D.

Procedure DescendantValues(D,H)

1 Initialize DSum(v)← 0 for each vertex v ∈V
2 foreach vertex v ∈V \ s do
3 Let D[u,v] be the bundle of v in D, where u = d(h(v)) // u = s′ if h(v) = s

4 DSum(d(v))← DSum(d(v))+

(
|H(v)|

2

)
5 DSum(u)← DSum(u)−

(
|H(v)|

2

)
6 foreach vertex v in D in bottom-up fashion do
7 foreach child c of v in D do
8 DSum(v)← DSum(v)+DSum(c)

By Lemma 7.2.4 we can locate the bundle of any vertex in O(1) time. The mean-

ing of the bundle of v is that H(v) is a SCC of G \ x for all x ∈ D(u,v). Hence, H(v)
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contributes the value f (H(v)) =
(
|H(v)|

2

)
in f (G \ x) for all x ∈ D(u,v). We can

accumulate these values by processing D in a bottom-up fashion, as shown in Proce-

dure DescendantValues. The accumulated values are stored in variables DSum(v) for

each vertex v. To compute the desired sums of these values, we first add the value

f (H(v)) to DSum(d(v)) and subtract it from DSum(u). This has the effect of cancelling

the value of f (H(v)) at all ancestors u of v in D such that h(v) ∈ D(u). Hence, Proce-

dure DescendantValues computes DSum(v) = f (D̃(v)) for all vertices v.

It is easy to verify that, given the dominator tree D and the loop nesting tree H,

Procedure DescendantValues runs in O(n) time.

Computing f (PCD(v)). Now our goal is to locate the vertices in the bundle of v that

are also ancestors of v in DR. We can do this fast with the help of our next lemma.

Lemma 7.2.5. Let D[u,v] = 〈u = w0,w1, . . . ,wl−1,wl = v〉 be the bundle of v in D. If

w1 is not a dominator of v in DR then no w j, 1 < j ≤ l− 1, is. Otherwise, let j be the

largest index 1 ≤ j ≤ l− 1 such that vertex v is a common descendant of w j in D and

DR. Then 〈wl−1,w j−2, . . .w1〉 is path in DR and v is a common descendant of every

vertex wi for 1≤ i≤ l−1.

To prove Lemma 7.2.5, we use the following two results:

Lemma 7.2.6. Let x, y and z be distinct vertices such that x is an ancestor of z in D and

y ∈ D(x,z). If z is an ancestor of x in DR then y ∈ DR(z,x).

Proof. Suppose, for contradiction, that y ∈ D(x,z) but y 6∈ DR(z,x). The fact that y ∈

D(x,z) implies that all paths from x to z in G contain y. But y 6∈ DR(z,x) implies that

there is a path in GR from z to x that avoids y, a contradiction.

Lemma 7.2.7 (Path Lemma [157]). Let T be a dfs tree of a digraph G, and let pre(v)

denote the preorder number of vertex v in T . If v and w are vertices such that pre(v)<

pre(w), then any path from v to w must contain a common ancestor of v and w in T .

Proof. We already stated and proved the Path Lemma in Chapter 3, section 3.3 as

Lemma 3.3.1.
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Now we are ready to state the proof of Lemma 7.2.5.

Proof. Let u = w0,w1, . . . ,wl−1,wl = v be the vertices in the bundle of v in D, in the

order they appear on D[u,v]. From the definition of the bundle we have h(v) is not a

descendant of wi in D for 1 < i≤ l. It suffices to show that if wi, 1 < i < l, is an ancestor

of v in DR then wi−1 ∈ D(wi,v). Assume by contradiction that the above statement is

not true. Then, there is a path π from v to wi that avoids wi−1. Path π does not contain

any vertex x 6∈D(wi−1), since otherwise the part of π from x to wi would have to include

wi−1. Therefore, all vertices in π are descendants of wi−1 in D. Let T be the dfs tree that

generated the loop nesting tree H of Gs, and let pre be the preorder numbering in T . We

claim that there is a vertex z in π such that all vertices in π are descendants of z in T .

The claim implies that v ∈H(z), so h(v) is a descendant of wi in D. But this contradicts

the fact that h(v) is not a descendant of wi in D. Hence, the lemma will follow.

To prove the claim, choose z to be the vertex in π such that pre(z) is minimum. Then

Lemma 7.2.7 implies that z is an ancestor of wi in T . Let y be any vertex in π. We argue

that pre(z)≤ pre(y)< pre(z)+ |T (z)|, hence y is a descendant of z in π. By the choice

of z we have pre(z) ≤ pre(y), so it remains to prove the second inequality. Suppose

pre(y)≥ pre(z)+ |T (z)|. Since v is descendant of wi in D it is also a descendant of wi

in T . So pre(v) < pre(y). By Lemma 7.2.7, path π contains a common ancestor q of

v and y in T . Vertex q is an ancestor of z in T , since v ∈ T (z) and y 6∈ T (z). But then

pre(q)< pre(z), which contradicts the choice of z.

Therefore, any path π from v to wi must contain wi−1. We conclude that wi−1 ∈

D[wi,v]. Now the fact that 〈wl−1,w j−2, . . .w1〉 is path in DR follows from Lemma 7.2.6.

Lemma 7.2.5 implies that we can compute the contribution of the SCCs of G[PCD(v)]

in f (G\ v) by applying a similar approach as for G[D̃(v)]. To facilitate the correspond-

ing computations, we use an auxiliary data structure that we refer to as the common

dominator forest Q of D and DR.

Common dominator forest Q: Forest Q is the resulting subgraph of D after deleting
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𝑣

𝑢

𝐷𝑅𝐷

𝑣

𝑢 = 𝑑(𝑣)

𝑣

𝑢

𝑄 𝑢

Figure 7.5: Illustration of edges (d(v),v) included in the common dominator forestQ.

all dominator tree edges (d(v),v) such that d(v) is not a child of v in DR. That is,

(d(v),v) is an edge ofQ if and only if d(v) ∈ DR(v). See Figure 7.5.

Procedure CommonDominatorForest(D,DR)

1 foreach vertices v ∈V \ s do
2 dv← d(v)
3 if v = dR(dv) then /* i.e., dv is a child of v in DR */

4 q(v)← dv

5 else
6 q(v)← null

7 returnQ /* q(v) is the parent of v in Q */

Note that Q is a forest that consists of subtrees of D. We use the notation Q(v) to

denote the tree in the common dominator forestQ that contains vertex v.

Procedure CommonDescendantValues implements the computation of f (PCD(v))

for all v. First, we construct a list L of vertex pairs 〈hv,v〉 such that hv = h(v) is not

a sibling of v in D. This list contains the vertices v for which we wish to locate their

common nontrivial dominators in the bundle D[u,v] of v in D. Note that L contains at

most n such pairs.

We process the pairs 〈hv,v〉 in L using a similar approach with Procedure Descen-

dantValues, but here we operate on the common dominator forest Q instead of D. By

Lemma 7.2.5, the common nontrival dominators of v that are in the bundle D[u,v] are

located in the tree Q(w), where w is the child of d(hv) that is an ancestor of v in D. Let

z be the nearest ancestor of v in D such that z ∈ Q(w). Then, the common nontrivial

dominators of v that we wish to locate are in the path Q[w,v].

It is straightforward to implement Procedure CommonDescendantValues so that it
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Procedure CommonDescendantValues(D,DR,H)

1 forall vertices v ∈V do
2 cdSize(v)← startSize(v)← endSize(v)← 0
3 cdSum(v)← startSum(v)← endSum(v)← 0

4 Initialize an empty list of pairs L.
5 foreach vertex v do /* construct list of pairs */

6 hv← h(v)
7 if d(hv) 6= d(v) then // hv is not a sibling of v in D
8 L← L∪〈hv,v〉

/* process L to find the vertex W (v) = w that is a child of d(hv) and an

ancestor of v in D and DR, for each vertex v with 〈hv,v〉 ∈ L */

9 W ← FindW(L) // computes all vertices W (v)

10 Q← CommonDominatorForest (D,DR)
/* process W and Q to find the vertex z that is the nearest ancestor of v

in D with z ∈ Q(w) and W (v) = w 6= null */

11 List Z← FindZ (W,Q)
/* Z contains the tuples 〈v,w,z〉 such that W (v) 6= null */

12 foreach tuple 〈v,w,z〉 ∈ Z do
/* w is the child of d(hv) and an ancestor of v in D and DR */

/* z is nearest ancestor of v in D with z ∈ Q(w) */

13 endSize(z)← endSize(z)+ |H(v)|
14 startSize(w)← startSize(w)+ |H(v)|

15 endSum(z)← endSum(z)+

(
|H(v)|

2

)
16 startSum(w)← startSum(w)+

(
|H(v)|

2

)
17 foreach tree Q inQ do
18 foreach vertex v ∈ Q, in a bottom-up fashion do
19 cdSize(v)← endSize(v)
20 cdSum(v)← endSum(v)
21 foreach child c of v in Q do
22 cdSize(v)← cdSize(v)+ cdSize(c)− startSize(c)
23 cdSum(v)← cdSum(v)+ cdSum(c)− startSum(c)

runs in O(n) time (given the dominator and loop nesting trees), except for the computa-

tion of w and z. We can compute these vertices in O(n) time for all pairs in L by bucket

sort. We perform a preorder traversal of D and store the preorder number pre(v) of each
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vertex v. We also store the reverse mapping pre_to_vertex(pv), which gives the vertex

with preorder number pv. That is pre_to_vertex(pre(v)) = v. In addition, we use two

abstract functions defined next. Let C be a list of tuples, and let t be a tuple in C. Then,

C.getTuple(i) returns the ith tuple in C, and t.getElement(k) returns the kth element in

tuple t.

For each pair 〈hv,v〉 in L we create a tuple 〈pre(d(hv)),pre(v),1〉. Also, for each

vertex v we create the tuple 〈pre(d(v)),pre(v),0〉. We sort these tuples and process them

in increasing order. For each tuple 〈pre(d(hv)),pre(v),1〉 we locate its predecessor of

the form 〈pre(d(v)),pre(v),0〉 in the sorted list. Then, we find the vertex w which is

a child of d(hv) and an ancestor of v in D and DR. The final result is stored in W (v),

which gives the desired vertex w of v. If w is not an ancestor of v in DR, then W (v) is

null. (For the details, please refer to Procedure FindW).

We compute the common dominator forest Q from D and DR. If d(v) is a child of

v in DR, then we store this relation as q(v) = d(v), otherwise the value of q(v) is null.

See Procedure CommonDominatorForest .

The calculation of z is similar to the computation of w. For all vertices v such that

W (v) = w 6= null, we create a tuple 〈TreeID(W (v)), pre(v),1〉 where TreeID(w) is an

integer id that specifies the tree Q(w) of Q containing w. Notice that the last element

of each tuple has value 1, which indicates that we have to find the nearest ancestor z

of v in D with z ∈ Q(w). We also create a tuple 〈TreeID(u), pre(u),0〉 for each vertex

u ∈ V . We sort all these tuples in ascending order by bucket sort. Then, for each tuple

〈TreeID(W (v)), pre(v),1〉 we locate its predecessor of the form 〈TreeID(z), pre(z),0〉

in the sorted list of tuples, and extract the corresponding vertex z. Finally, we create a

tuple 〈v,w,z〉 for each v such that W (v) 6= null, and store it in the list Z. See Procedure

FindZ for the details.

Computing f (PCA(v)). In order to compute
�
 �	7.4 we need to specify the size of

the set PCA(v). Since |PCA(v)|= |V |−|D(v)∪DR(v)|= |V |−|D(v)|−|DR(v)|+|D̃(v)∩

D̃R(v)|+1 = |V |−|D(v)|−|DR(v)|+|PCD(v)|+1, it suffices to compute |PCD(v)|. This
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can be done with the same procedure as in the computation of f (PCD(v)), where

we substitute

(
|H(w)|

2

)
with |H(w)| in the corresponding calculations, see Proce-

dure CommonDescendantValues. We are going to give a complete example in next

section.
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Procedure FindW(List L of pairs 〈hv,v〉)
1 Initialize lists A,B,C
/* pre(v) is the preorder number pv of a vertex v in the dominator tree D,

and pre_to_vertex(pv) is the vertex v with preorder number pv in D */

2 forall vertices v ∈V do
3 W (v)← null

4 foreach 〈hv,v〉 ∈ L do
5 lid ← 1 // lid = 1 indicates list A
6 A← A∪〈pre(d(hv)), pre(v), lid〉
7 foreach v ∈V do
8 lid ← 0 // lid = 0 indicates list B
9 B← B∪〈pre(d(v)), pre(v), lid〉

10 C← A∪B
11 Bucket sort list C
12 csize← size of List C
13 for i← csize to 1 do

/* C.getTuple(i) gives the ith tuple in the sorted list C */

14 tuple←C.getTuple(i)
/* tuple.getElement(k) gives the kth element in tuple */

15 if tuple.getElement(2) = 0 then // i.e., lid = 0 so tuple ∈ B
16 continue

/* since the second element of tuple is pre(v), extract v from it */

17 v← pre_to_vertex(tuple.getElement(2))
/* Find the largest index j < i of list C such that

C.getTuple( j).getElement(2) = 0 */

18 temp_tuple←C.getTuple( j)
/* i.e., temp_tuple ∈ B and is the nearest such predecessor of tuple in

list C */

/* since the second element of temp_tuple is pre(w), extract w from it */

19 w← pre_to_vertex(temp_tuple.getElement(2))
/* test if w is an ancestor of v in DR using the ancestor-descendant

test of [158] */

20 pv← preorder number of v in DR

21 pw← preorder number of w in DR

22 sizew← |DR(w)|
23 if pw ≤ py and pv < (pw + sizew) then

/* w is an ancestor of v in DR */

24 W (v)← w

25 return W
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Procedure FindZ(W ,Q)

1 Initialize lists A,B,C,Z
/* pre(v) is the preorder number pv of a vertex v in the dominator tree D,

and pre_to_vertex(pv) is the vertex v with preorder number pv in D */

/* TreeID(w) is an integer id that specifies the tree Q(w) of Q containing

w */

2 lid ← 1 // lid = 1 indicates list A
3 foreach v ∈V do
4 if W (v) 6= null then
5 w←W (v)
6 A← A∪〈TreeID(w), pre(v), lid〉

7 lid ← 0 // lid = 0 indicates list B
8 foreach v ∈V do
9 B← B∪〈TreeID(v), pre(v), lid〉

10 C← A∪B
11 Bucket sort list C
12 csize← size of list C
13 for i← csize to 1 do

/* C.getTuple(i) gives the ith tuple in the sorted list C */

14 tuple←C.getTuple(i)
/* tuple.getElement(k) gives the kth element in tuple */

15 if tuple.getElement(2) = 0 then
// i.e., lid = 0 so tuple ∈ B

16 continue

17 Find the largest index j < i of list C such that C.getTuple( j).getElement(2) =
0

18 temp_tuple←C.getTuple( j)
/* i.e., temp_tuple ∈ B and is the nearest such predecessor of tuple in

list C */

/* z is the nearest ancestor of v in D with z ∈ Q(w); the second element

of temp_tuple contains pre(z), so extract z from it */

19 z← pre_to_vertex(temp_tuple.getElement(2))
/* second element of tuple contains the pre(v), extract v from it */

20 v← pre_to_vertex(tuple.getElement(2))
/* extract w of v */

21 w←W (v)
22 Z← Z∪〈v,w,z〉

/* return a list Z with tuples 〈v,w,z〉 */

23 return Z
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7.3 Complete Example

Let us consider the flow graph G1 (resp., reverse flow graph GR
1 ) of a input graph G

(resp., GR, reverse graph of G) with start vertex 1 as shown in Figure 7.6.

3

12

4 5
6

7

1413

8
9 10

11

12

2019

1817
1615

21

𝐺1

3

12

4 5
6

7

1413

8
9 10

11

12

20
19

1817
1615

21

𝐺1
𝑅

Figure 7.6: Flow graph G1 (resp., reverse flow graph GR
1 ) of strongly connected graph

G. Solid edges represent the dfs tree edges with root vertex 1.

Initialization. Let us compute the dominator tree D (resp., DR) and loop nesting tree

H (resp., HR) of the flow graph G1 (resp ., GR
1 ) as shown in Figure 7.7 and 7.8 respec-

tively. After that, we will assign a preorder number to each vertex of every tree in a

DFS visit.

Computation. We already explained that the Procedure DescendantValues outputs

the accumulated values of
(
|H(v)|

2

)
in f (G\x) for all x ∈D(u,v). The resulted values

of SCCs in D̃(v) and in D̃R(v) are presented in the Tables 7.1 and 7.2 respectively. Table

7.3 contains the accumulated values of
(
|H(v)|

2

)
for each x ∈ D(u,v).
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Figure 7.7: Dominator Trees D and DR of the flow graphs G1 and GR
1 respectively.

Edges (d(v),v) are shown in red color in D, if d(v) is the child of v in DR and vice
versa.
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Figure 7.8: Loop Nesting Trees of G and GR with start vertex 1

175



Chapter 7. Critical Nodes Detection

v d(v) h(v) α Bundle[v,α] |H(v)| DSum(v) DSum(α)

2 5 5 1 [2,1] 5 10 -10

3 2 2 5 [3,5] 4 6 -6

5 1 1 0 [5,0] 7 21 -21

9 1 1 0 [9,0] 13 78 -78

12 9 9 1 [12,1] 4 6 -6

13 12 9 1 [13,1] 3 3 -3

14 12 12 9 [14,9] 3 3 -3

15 13 13 12 [15,12] 2 1 -1

19 18 9 1 [19,1] 3 3 -3

20 19 19 18 [20,18] 2 1 -1

Table 7.1: Calculation of SCCs in D̃(v), dummy vertex(s′ = 0), Table only contains
those vertices v such that d(v) 6= d(h(v)), α denotes the value of d(h(v))

v dR(v) hR(v) α Bundle[v,α] |HR(v)| DSumR(v) DSumR(α)

5 1 1 0 [5,0] 7 21 -21

9 12 12 11 [9,11] 1 1 -1

10 11 11 1 [10,1] 1 1 -1

11 1 1 0 [11,0] 13 78 -78

12 11 11 1 [12,1] 8 28 -28

13 16 16 9 [13,9] 2 1 -1

16 9 12 11 [16,11] 3 3 -3

19 20 20 11 [19,11] 2 1 -1

20 11 11 1 [20,1] 3 3 -3

Table 7.2: Calculation of SCCs in D̃R(v), dummy vertex(s′ = 0), Table only contains
those vertices v, such that dR(v) 6= dR(hR(v)), α denotes the value of dR(hR(v)).
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Vertices from 1 to 11

v 1 2 3 4 5 6 7 8 9 10 11

In D 99 6 0 0 10 0 0 0 12 0 0

In DR 99 0 0 0 0 0 0 0 3 0 32

Vertices from 12 to 21

In v 12 13 14 15 16 17 18 19 20 21 –

In D 9 1 0 0 0 0 3 1 0 0 –

In DR 4 0 0 0 1 0 0 0 1 0 –

Table 7.3: Final Calculation of SCCs in D̃(v) and D̃R(v) in bottom up fashion.

𝑄

3

20

19

1817 1615

14 13

1 2 4 5 6 7

8 910 11

1221

Figure 7.9: Common dominator forest obtain from the D and DR.

Now, our goal is to compute the SCCs in the common descendants of each vertex

v∈V . Hence, at first, by executing the Procedure CommonDominatorForest , we create

a common dominator forest, which is shown in Figure 7.9. The tree-id of each vertex in

the dominator forest is presented in Table 7.4. Then, we compute the SCCs in D̃(v)∩

D̃R(v) for each vertex v ∈ V by using the Procedure CommonDescendantValues along

with Procedures FindW and FindZ . The calculated value of y, w, and z during the
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execution of Procedure CommonDescendantValues are presented in Table 7.5 and end

results are available in Table 7.6.

Still, we have to calculate the CA(v) and SCCs value in CA(v) for each vertex v ∈V .

Table 7.7 contains the result of CA(v) calculations.

The final accumulated calculation is shown in Table 7.8, which shows that node 12

is the most critical node.

Tree-ID Elements Remarks

1 {11}

2 {10}

3 {21}

4 {19,20} 19–>20

5 {18}

6 {9,12} 9–>12

7 {17}

8 {14}

9 {13,16} 13–>16

10 {15}

11 {6}

12 {8}

13 {2}

14 {7}

15 {4}

16 {3}

17 {5}

18 {1}

Table 7.4: Generating the Trees in common forestQ

178



7.3. Complete Example

y w y in
D̃R(w)

z |H(y)| startSize
(w)

endSize
(z)

startSum
(w)

endSum
(z)

20 19 No – – – – – –

15 13 No – – – – – –

14 12 No – – – – – –

3 2 No – – – – – –

19 9 No – – – – – –

13 9 Yes 12 3 3 3 3 3

12 9 No – – – – – –

2 5 No – – – – – –

9 1 Yes 1 13 13 13 78 78

5 1 Yes 1 7 20 20 99 99

Table 7.5: Finding the y,w and z

Vertices from 1 to 11

v 1 2 3 4 5 6 7 8 9 10 11

cdSize(v) 20 0 0 0 0 0 0 0 3 0 0

cdSum(v) 99 0 0 0 0 0 0 0 3 0 0

Vertices from 12 to 21

In v 12 13 14 15 16 17 18 19 20 21 –

cdSize(v) 3 0 0 0 0 0 0 0 0 0 –

cdSum(v) 3 0 0 0 0 0 0 0 0 0 –

Table 7.6: Final Calculation of SCCs in CD(v) = D̃(v)∩ D̃R(v) in bottom up fashion.
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v |D̃(v)| |D̃R(v)| |CD(v)| |CA(v)| SCCValue(CA(v))

1 20 20 20 0 0

2 4 0 0 16 120

3 0 0 0 20 190

4 0 0 0 20 190

5 5 0 0 15 105

6 0 0 0 20 190

7 0 0 0 20 190

8 0 0 0 20 190

9 10 3 3 10 45

10 0 0 0 20 190

11 0 12 0 8 28

12 9 4 3 10 45

13 2 0 0 18 153

14 0 0 0 20 190

15 0 0 0 20 190

16 0 2 0 18 153

17 0 0 0 20 190

18 3 0 0 17 136

19 2 0 0 18 153

20 0 2 0 18 153

21 0 0 0 20 190

Table 7.7: SCC value in CA (in our case |V |= 21) and |CA|= |V |−|D̃(v)|
−|D̃R(v)|+CD−1
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v SCCValue
(D̃(v))

SCCValue
(D̃R(v))

SCCValue
(CD(v))

SCCValue
(CA(v))

criticalValue
(v)

1 99 99 99 0 99

2 6 0 0 120 126

3 0 0 0 190 190

4 0 0 0 190 190

5 10 0 0 105 115

6 0 0 0 190 190

7 0 0 0 190 190

8 0 0 0 190 190

9 12 3 3 45 57

10 0 0 0 190 190

11 0 32 0 28 60

12 9 4 3 45 55

13 1 0 0 153 154

14 0 0 0 190 190

15 0 0 0 190 190

16 0 1 0 153 154

17 0 0 0 190 190

18 3 0 0 136 139

19 1 0 0 153 154

20 0 1 0 153 154

21 0 0 0 190 190

Table 7.8: Final calculation of critical value of the vertices
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7.4 Experimental Analysis

In this section we report experimental results of various algorithms for the critical node

detection problem. Recall that we are given a directed graph G= (V,E) and a parameter

k, and our goal is to decrease the pairwise connectivity f (G) of G as much as possible

by deleting up to k vertices. For k = 1 (finding the most critical node), the algorithm of

section 7.2.1 gives an exact linear-time solution. We compare the actual running time

of this algorithm against the naive algorithm that tests f (G \ v) for all strong articu-

lation points v of G. Then, we turn to the general case, k > 1, where we compare the

performance of various heuristics, both in terms of solution quality and of running time.

We wrote our codes in C++ without using any external graph library. We used a

uniform framework for the development and the same data structures for represent-

ing graphs. The source codes were compiled in g++ v.4.9.3 with full optimization

(flag -O3). We conducted the experiments on a 64-bit GNU/Linux machine running on

Ubuntu 14.04LTS with Intel i5-3210M quard-core processor, first core has 2300 MHz

and other three cores have 1200 MHz frequency. The machine has 4GB of SODIMM

DDR3 synchronous 1600 MHz of RAM, 32KB, 256KB, and 3MB of L1, L2 and L3

caches respectively. All experiments were executed on a single core without using any

parallelization and the CPU running time was measured with the getrusage function.

7.4.1 Algorithms and Heuristics

We compare the performance of two algorithms for computing the most critical node of

a directed graph.

Naive (NAIVE). This is the straightforward algorithm to compute the most critical

node of a given graph. For each strong articulation point v, it calculates the value of

f (G\ v) and chooses a vertex v that minimizes f (G\ v).

Most Critical Node (MCN). This refers to the linear-time algorithm that we presented

in Section 7.2.1.
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For the general case of CNDP, we consider the heuristic that repeatedly removes the

most critical node (computed by Algorithm MCN of Section 7.2.1) in the current graph.

We refer to this heuristic also as MCN since there is no risk of confusion. For example,

if we apply our MCN algorithm to the graph shown in Figure 7.10(i), then it will choose

vertex a as the most critical node. The removal of vertex a will decompose the graph

into 5 strongly connected components {d},{e},{ f ,g},{b,c}. (See Figure 7.10 (ix).)

Therefore, the connectivity value of G \ a is f (G \ a) =

(
2
2

)
+

(
2
2

)
= 2, which is

indeed the highest possible fragmentation of the graph after the removal of any single

vertex. In addition to that, we considered the following three heuristics which were

among the top performers in the experiments on undirected graphs by Ventresca and

Aleman [168]:

Maximum degree (MAX-DEG). This heuristic repeatedly removes a vertex of max-

imum degree. Since we deal with directed graphs, the degree of a vertex is the total

number of incoming and outgoing edges. Clearly, we expect this to be a fast heuristic

that produces low-quality solutions. For example, if we apply this heuristic to the graph

presented in Figure 7.10 (i), then it will choose vertex c, which has the maximum de-

gree in the graph. The resulting graph G\ c has three SCCs {s,a,d,e},{ f ,g},{b} (see

Figure 7.10(x)) and f (G\ c) =

(
4
2

)
+

(
2
2

)
= 7.

PageRank (PR). PageRank is a well-known algorithm used to rank websites in

search engines. This heuristic repeatedly removes the vertex with highest PageRank

[130].

Betweenness Centrality (BC). Betweenness Centrality is a measure of a vertex cen-

trality in a graph. It is equal to the number of shortest paths (between any pair of

vertices) that pass through that vertex. In our experiments we used the algorithm of

Brandes [24] which has O(mn+n2) running time.

We also designed the next two new heuristics:
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Figure 7.10: A flow graph Gs (i) and its reverse GR
s (ii), their dominator trees D (iii)

and DR (v) and loop nesting trees H (iv) and HR (vi). The corresponding digraph G
is strongly connected. Solid edges in Gs and GR

s represent the dfs trees edges with
root s that generate H and HR, respectively. During the dfs of Gs and GR

s , the edges
are examined in lexicographic order. The strongly connected components of G\ v, for
v ∈ {e,s,a,c}, are shown in figures (vii), (viii), (ix) and (x), respectively.

Maximum number of children in Loop Nesting Tree (LNT). This heuristic repeat-

edly removes a vertex with maximum number of children in the loop nesting tree.

The intuition for this heuristic is the following. Let v be any non-leaf vertex in H,
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and let v1,v2, . . . ,vl be its children. If v has many children, then it is likely that several

of their loops may induce a different SCC in G \ v. (Note, however, that this is not

guaranteed, as loop(vi) and loop(v j) of two distinct children vi and v j of v, may still

belong in the same SCC of G \ v.) For example, if we apply this heuristic to the loop

nesting tree H (Figure 7.10(iv)) of Gs (Figure 7.10(i)), s has the maximum number of

children. The removal of vertex s causes the graph to decompose into four SCCs (see

Figure 7.10(viii)) and f (G \ s) = 3. As we shall see in the experimental results, this

heuristic performed reasonably well in most of the tested instances.

Maximum number of children in Dominator Tree (DT). The main idea behind this

heuristic is similar to LNT. The only difference is that it chooses a vertex with maximum

number of children in the dominator tree instead of the loop nesting tree. For example,

if we apply this heuristic to the dominator tree D (Figure 7.10(iii)) of Gs (Figure 7.10(i))

then it will choose vertex e. The resulting graph G\e has three SCCs (Figure 7.10(vii))

and f (G\e) = 5. In our experiments, the performance of the DT heuristic turned out to

be inferior of LNT in most instances.

Remark. Note that in all of the above heuristics, we may have several candidate

vertices to choose for the next vertex to be removed. (It seems that we are giving an

advantage to MCN.) In this case, we break ties by choosing a vertex uniformly at random

among these candidates.

Datasets and Experiments performed. For our experiments, we used the same

dataset that were used in the experiments in Chapters 4, 5 and 6. Most of them are taken

from the 9th DIMACS implementation challenge [43] and from the Stanford Large Net-

work Dataset Collection [107]. The characteristics of those graphs in terms of CNDP

are described in Table 7.9. We performed several experiments in order to highlight the

characteristics of the different methods considered in our study. First, we compared the

running times of MCN and NAIVE in order to assess the practical efficiency of MCN.

Next, we performed an experiment where each heuristic removed 5% of the vertices in
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the input graph G, according to its own strategy. We measured the running times of the

different heuristics and the quality of the solutions they provided in this experiment, i.e.,

their effectiveness in decreasing the connectivity function f (G). We finally measured

how many vertices each heuristic needs to remove in order to decrease the connectivity

function f (G) of the input graph G by 50%. In all our experiments, we took the average

of 10 different runs for each heuristic. Moreover, any execution running longer than 24

hours was terminated.

Graph Type n m Final f (G) MCN NAIVE

rome99 RN 3353 8859 5596195 0.003 0.107

p2p-Gnutella25 P2P 5153 17695 13212370 0.010 0.563

p2p-Gnutella31 P2P 14149 50916 99454356 0.023 3.868

web-NotreDame WG 53968 296228 1243042947 0.079 30.362

soc-Epinions1 SN 32223 443506 512720305 0.143 40.505

USA-road-NY RN 264346 730100 34635284926 0.289 1014.150

USA-road-BAY RN 321270 794830 51526469796 0.378 2259.050

Amazon-302 PCP 241761 1131217 28983800958 0.948 4530.410

WikiTalk SN 111881 1477893 6197128792 0.667 209.248

web-Stanford WG 150532 1576314 8719604712 1.381 1206.280

Amazon-601 PCP 395234 3301092 77978742454 2.188 9890.940

web-Google WG 434818 3419124 94192566065 3.905 17184.800

web-BerkStan WG 334857 4523232 42556873058 1.230 2437.020

Table 7.9: The characteristics of the real-world graphs that we consider; n and m refers
to the number of vertices and the number of edges, respectively. The graph types are
encoded as: road network (RN), peer to peer (P2P), web graph (WG), social network
(SN), production co-purchase (PCP). The graphs are sorted in increasing order accord-
ing to their number of edges. Also, we reported the running time in seconds for MCN

and NAIVE algorithms to find the most critical node. Initial f (G) =

(
n
2

)
and final f (G)

is obtained after deleting a most critical node of G.
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NAIVE vs MCN. In our first experiment, we aim at assessing the practicality of MCN,

by measuring the time it takes MCN and NAIVE to remove the most critical node in a

graph.

As it can be seen from Figure 7.11, it pays off to use a sophisticated algorithm, as

MCN was consistently 2 to 4 orders of magnitude faster than NAIVE for all the graphs

considered in our dataset. The full data for this experiment are reported in Table 7.9.
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Figure 7.11: Comparison of running times to find the most critical node, between the
NAIVE and MCN algorithms. Running times are in log scale of µs/edge. The exact
values are presented in Table 7.9.

Final f (G) values after removing the 5% of total vertices. In our second experiment

we tried to assess the effectiveness of the heuristics, by measuring the decrease in f (G)

that resulted after removing the top 5% vertices according to each heuristic. Figure 7.12

(top) plots the final f (G) achieved by the heuristics after the removal of those 5% most

critical nodes. The plot does not include the PR and BC heuristics because either f (G)

decreased marginally or their execution was taking too long (> 24 hours). The details

of this experiments are reported in Tables 7.10 and 7.11. The analytical observation

showed that, on average, the value of f (G) was decreased by 85.04%, 75.18%, 64.88%,

60.92%, 12.03%, and 35.66% by MCN, LNT, MAX-DEG, DT, PR, and BC respectively.

Therefore, on average, the MCN algorithm provides 13.11%, 31.08%, 39.58%, 6.81
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times, and 2.04% times better solution quality than the heuristics LNT, MAX-DEG, DT,

PR, and BC respectively. Among these other five heuristics, LNT produced the best

results. Specifically, it achieves 23.40%, 15.89%, 4.7 times, and 1.9 times better results

than DT MAX-DEG, PR, and BC respectively. Furthermore, we notice that MAX-DEG is

5.94%, 4.9 times and 48.71% better than DT, PR, and BC respectively, which may seem

rather surprising. Among the worst three performers, DT generates the best results, as

it decreases f (G) by a factor of 4.7 and 1.7 with respect to PR and BC respectively.

In addition, we noticed that every heuristic produce a better results for some graphs.

In particular, we observed this phenomena for web graphs (“Web Norte Dame", “Web

Google", “web Stanford" and “Web Berkastan") of our datasets. It seems that those web

graphs have a weak connectivity structure so that they can be easily destroyed after the

removal of few number of vertices. (For the details report, please refer the Tables 7.10

and 7.11).

We also measured the total running time required to remove the specified 5% num-

ber of critical nodes. The results are reported in Tables 7.10 and 7.11 and plotted in

Figure 7.12 (bottom). The experimental results showed that, on average, LNT has better

performance in terms of running time than the other heuristics. It is 3.18 times faster

than MCN, and 34.12%, 22.72% faster than DT and MAX-DEG respectively. We also

note that MAX-DEG is 14% faster than DT. We conclude that MCN was able to achieve a

very good fragmentation on our datasets, at the price of being about three times slower

than our faster heuristic LNT.

Total number of critical nodes that need to be deleted to decrease f (G) by 50%.

In our third experiment paradigm, we evaluated all the heuristics in terms of the total

number of critical nodes they need to remove from the graph to decrease the value of

f (G) by 50%. The results of this experiment are presented in Tables 7.12 and 7.13,

and plotted in Figure 7.13 (top). As in our previous experiment, PR and BC perform

poorly. They remove an excessive number of critical nodes, and for many instances

were terminated as they took longer than 24 hours to complete the task of decreasing
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Figure 7.12: Decrease % of f (G) values after the removal of 5% critical nodes of the
total number vertices (top), and the total running time to delete those critical nodes
(bottom).

f (G) by 50%. Therefore, the plot in Figure 7.13 does not include these two heuristics.

The best results, overall, were again achieved by MCN: On average, it removed a number

of critical nodes that is less than the corresponding number of nodes removed by LNT,

MAX-DEG and DT, by a factor of 1.74, 2.52 and 3.17, respectively. See Figure 7.13

(top). As like in 5% critical node removal case, we again notice that every heuristic

give a good result in some graphs for this case as well. More precisely, this happened

to most of the web graphs (“Web Norte Dame", “Web Google", “web Stanford" and

“Web Berkastan") of our datasets. Therefore, again it shows that the web graphs of our

datasets can be easily destroyed after the removal of few vertices (For the details report,

see in Table 7.12).

Finally, we measured the running time required by each heuristic to decrease f (G)

by 50%. The experimental data are reported in Tables 7.12 and 7.13 and plotted in
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Figure 7.13: Comparison of removed % of critical nodes that need to be delete to de-
crease the value of f (G) by 50% (top), Comparison of running times to delete those
critical nodes, running time is showed in log scale of µs/edge presented in Tables 7.12
and 7.13.

Figure 7.13 (bottom). We observe that, on average, LNT and MAX-DEG are the fastest,

and they completed this task almost within the same time. Specifically, LNT is 30% and

39% faster than MCN and DT, respectively. We can also see that MCN pays off 12%

over DT.

We conclude that on our datasets MCN was able to produce the desired fragmenta-

tion by removing a much smaller number of critical nodes than its competitors. More-

over, MCN achieved the required fragmentation without incurring a significant penalty

on the running time, since on average it was only about 30% slower than the fastest

heuristic.
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7.4. Experimental Analysis

Graphs MCN MAX-DEG

Time Final f (G) Time Final f (G)

rome99 0.512 3202817 0.062 4683393.0

p2p-Gnutella25 1.910 6543153 0.230 10176816.0

p2p-Gnutella31 15.837 28694190 2.266 74291955.0

web-NotreDame 7.269 2472820 3.504 4757339.0

soc-Epinions1 169.322 150424430 24.614 240432817.0

USA-road-NY 3234.930 1244058481 456.339 13406602004.7

USA-road-BAY 1171.528 61195614 679.580 12542084237.0

Amazon-302 5445.483 1677930792 1551.250 17037852002.0

WikiTalk 1283.187 372200268 220.511 466731449.0

web-Stanford 225.311 1269730.1 117.499 34659085.7

web-Google 8964.042 1795860.8 5390.427 10631052114.0

web-BerkStan 1041.739 15226342 321.578 331876257.7

Graphs LNT DT

Time Final f (G) Time Final f (G)

rome99 0.099 2645775.3 0.1050841 4550311.8

p2p-Gnutella25 0.527 9582277.7 0.4974243 8284945.4

p2p-Gnutella31 4.804 43402402.9 5.719832 50773962.5

web-NotreDame 4.206 1162775.8 7.852506 15036096

soc-Epinions1 71.333 275818164.1 52.73888 185733546.5

USA-road-NY 562.951 19417764438 539.8804 27408935605

USA-road-BAY 858.288 4739852019 1057.7161 32136610238

Amazon-302 1651.789 5312281 1488.914 15298675869

WikiTalk 668.444 1069698408 424.2926 444865777.9

web-Stanford 61.542 5346952.1 140.8944 243992686.4

web-Google 2649.884 2430948.4 5973.944 24586821491

web-BerkStan 241.218 15972686 591.7983 5388369331

Table 7.10: Running time and efficiency details of the heuristics MCN, MAX-DEG, LNT
and DT to decrease the value of f (G) by removing the 5% critical nodes of total vertices,
execution running longer than 24 hours (86400 seconds) were terminated.
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Graphs PR BC

Time Final f (G) Time Final f (G)

rome99 0.573 4884376 25.145 3532319

p2p-Gnutella25 1.958 11695866 624.720 9748320

p2p-Gnutella31 11.768 89171335 14107.600 43389814

web-NotreDame 40.757 1187213578 5988.960 1187242406

soc-Epinions1 333.320 466574893 > 24h N/A

USA-road-NY 4921.500 31279714089 > 24h N/A

USA-road-BAY 9090.710 46331398366 > 24h N/A

Amazon-302 10960.800 26328129005 > 24h N/A

WikiTalk 4787.530 5626218004 > 24h N/A

web-Stanford 8198.780 9608941068 60304.000 6859065625

Amazon-601 45517.300 70465771155 > 24h N/A

web-Google > 24h N/A > 24h N/A

web-BerkStan > 24h N/A > 24h N/A

Table 7.11: Running time and efficiency details of the heuristics PR, BC to decrease the
value of f (G) by removing the 5% critical nodes of total vertices, execution running
longer than 24 hours (86400 seconds) were terminated.
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7.4. Experimental Analysis

Graphs MCN MAX-DEG

Time CNs CNs% Time CNs CNs%

rome99 0.622 209 6.233 0.133 403 12.019

p2p-Gnutella25 1.879 252 4.890 0.468 545 10.576

p2p-Gnutella31 9.996 392 2.771 4.175 1363 9.633

web-NotreDame 0.429 5 0.009 0.093 8 0.015

soc-Epinions1 92.851 768 2.383 22.806 1430 4.438

USA-road-NY 1571.749 4413 1.669 427.597 11202.1 4.238

USA-road-BAY 722.032 2137 0.665 452.241 8824 2.747

Amazon-302 1962.022 2771 1.146 1777.947 15160 6.271

WikiTalk 280.789 547 0.489 43.538 719 0.643

web-Stanford 2.91 3 0.002 1.67 14 0.009

web-Google 2223.312 1416 0.326 2006.759 5063 1.164

web-BerkStan 6.936 5 0.001 8.082 79 0.024

Graphs LNT DT

Time CNs CNs% Time CNs CNs%

rome99 0.097 152 4.533 0.278 485.3 14.474

p2p-Gnutella25 0.802 428.7 8.319 0.693 375.4 7.285

p2p-Gnutella31 4.229 593.5 4.195 5.795 719.2 5.083

web-NotreDame 0.481 23 0.043 0.624 51.8 0.096

soc-Epinions1 74.302 1748 5.425 33.481 925.7 2.873

USA-road-NY 662.274 16886.8 6.388 1508.227 37553.1 14.206

USA-road-BAY 809.933 8310.4 2.587 1488.333 42929.6 13.362

Amazon-302 1197.401 5351.5 2.214 1586.308 12767.8 5.281

WikiTalk 235.568 1474.7 1.318 89.458 675 0.603

web-Stanford 4.665 23 0.015 1.713 4 0.003

web-Google 1748.406 3149.1 0.724 3074.473 8169.4 1.879

web-BerkStan 28.821 105 0.031 15.219 356 0.106

Table 7.12: Running time and efficiency details of MCN algorithm and the heuristics
MAX-DEG, LNT and DT to decrease the value of f (G) by 50%, computation running
longer than 24 hours (86400 seconds) were terminated.
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Graphs PR BC

Time CNs CNs% Time CNs CNs%

rome99 2.009 698 20.817 27.855 338 10.081

p2p-Gnutella25 8.401 1228 23.831 850.125 403 7.821

p2p-Gnutella31 58.176 3733 26.383 13071.000 596 4.212

web-NotreDame 1269.170 12446 23.062 1901.440 392 0.726

soc-Epinions1 1738.610 9250 28.706 > 24h > 24h > 24h

USA-road-NY 17381.000 67585 25.567 > 24h > 24h > 24h

USA-road-BAY 35393.700 71333 22.203 > 24h > 24h > 24h

Amazon-302 57202.600 69881 28.905 > 24h > 24h > 24h

WikiTalk 26322.900 32423 28.980 > 24h > 24h > 24h

web-Stanford 46097.200 36357 24.152 60305.200 9166 6.089

web-Google > 24h N/A N/A > 24h N/A N/A

web-BerkStan > 24h N/A N/A > 24h N/A N/A

Table 7.13: Running time and efficiency details of MCN algorithm and the heuristics
PR and BC to decrease the value of f (G) by 50%, computation running longer than 24
hours (86400 seconds) were terminated.

194



8
Handwritten Signature Verification

8.1 Introduction

Biometrics examine the physical or behavioral traits that can be used to determine a

person’s identity. Biometric recognition allows for the automatic recognition of an in-

dividual based on one or more of these traits. This method of authentication ensures that

the person is physically present at the point-of-identification and makes unnecessary to

remember a password or to carry a token. The most popular biometric traits used for

authentication are face, voice, fingerprint, iris and handwritten signature.

In our study, we focus on handwritten signature verification (HSV), which is a most

common, natural, and trusted method for user identity verification. HSV can be classi-

fied into two main classes, based on the device used and on the method used to acquire

data related to the signature: online and offline signature verification. Offline methods

process handwritten signatures taken from scanned documents, which are, therefore,

represented as images. This means that offline HSV systems only process the 2D spatial

representation of the handwritten signature (i.e., its shape). Conversely, online systems

use specific hardware, such as pen tablets, to register pen movements during the act of

signing. For this reason, online HSV systems are able to process dynamic features of

signatures, such as the time series of the pen’s position and pressure.

Online HSV has been shown to achieve higher accuracy than offline HSV [93, 95,

137] but unfortunately it suffers from several limitations. In fact, handwritten signatures

are usually acquired by means of digitizing tablets connected to a computer, because

common low-end mobile devices (such as mobile phones) may not be able to support

the verification algorithms (due to their hardware configuration capacity to compute

the algorithm) or may be too slow to run the verification algorithm (due to limited
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Chapter 8. Handwritten Signature Verification

computational power). As a result, the range of possible usages of the verification

process is strongly limited by the hardware needed. To overcome this limitation, one

needs techniques capable of verifying handwritten signatures acquired by smartphones

and tablets in mobile scenarios with very high accuracy. Online HSV systems (such

Register
Modify
Verify

Data Server

(𝑖)

Data Server

Register
Modify
Verify

(𝑖𝑖)

Figure 8.1: Overview of the Handwritten Signature Verification

as [41, 111, 151, 165, 176]) are able to address only partially these issues: they are

supported by mobile devices, but they are not inherently designed for common low-

end mobile devices such as mobile phones; several approaches make use of pen pads

(special purpose hardware for handwriting), signature tablets (special purpose desktop

and mobile hardware for signing), interactive pen displays (complete instruments for

working in digital applications), Kiosk systems and PC Tablets.

As for the online HSV systems described in [23, 104, 120], even if experiments

related to online HSV were carried out on low-end devices in order to evaluate the

verification accuracy, no analysis addressing the computational time is used in the algo-
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8.2. Features of the Online Signatures

rithm design (which is particularly important, due to the limited computational power

of mobile devices).

Normally, low-end devices take an input stream of thandwritten signature and then

send it to the server for verification, which has powerful hardware configuration. After

that, server analyzed the input stream and send the response flag to the corresponding

devices, which determines the permission for the respective user as shown in Figure

8.1-(i). In our security model, the client, i.e. low end device, itself checks the user

identity through an application and hence not require to send the data to server for the

verification as shown in 8.1-(ii). Moreover, if the user modifies his/her signature, then

it will immediately notify the changes to server. The main goal of our work is to ad-

dress the above challenges by designing a new online HSV system that can be run on

low-end devices too. The novelties of our approach lie mainly in the following aspects.

First, we propose a method for the verification of signature dynamics which is com-

patible to a wide range of low-end mobile devices (in terms of computational overhead

and verification accuracy) so that no special hardware is needed. Secondly, our new

method makes use of several technical features that, to the best of our knowledge, have

not been previously used for handwritten signature recognition. Finally, in order to as-

sess the verification accuracy of our HSV system, along with the average computational

time, we conduct an experimental study whose results are reported for different data

sets of signatures. A preliminary version of this Chapter was presented at the 2nd Inter-

national Conference on Information Systems Security and Privacy [131]. Moreover, the

presented algorithm is published as a book Chapter in “Communications in Computer

and Information Science Series” by Springer Publications [133].

8.2 Features of the Online Signatures

8.2.1 Dynamics

An online handwritten signature on a digital device is a series of points, and each point

is represented by a vector in four dimensions, X, Y, Pressure and Time. We define these
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Chapter 8. Handwritten Signature Verification

series of points as dynamics of the signature. When the user writes the signature, s/he

might do pen-up and pen-down moves rather than moving the pen tip continuously. We

define a stroke (ST) as the trajectory of a pen tip between a pen-down and a pen-up. A

signature can be can be partitioned into multiple strokes as shown in Figure 8.2 and in

Figure 8.3.

Figure 8.2: Handwritten Signature

• X,Y: The x and y coordinates of each sampled point that is captured from the

device screen. Since the user may put his/her signature on any region of the

screen, a translated mean origin point is computed and all the X-Y coordinates

are translated into the new coordinates with the reference of that new origin point.

• Pressure (P): The pressure with which the screen is pressed. When the pen

is down, or when the user draws the line continuously, then the pressure value

becomes 1 (maximum value) for that points. Similarly, when the pen is released

from the screen, then the pressure value becomes 0 (minimum value) for that

specific point.

• Time Series (TS): The sequence of equispaced sampling time instants. The sam-

pling period, i.e., the time difference between two consecutive samples, is con-

stant and exactly equal to the inverse of the device sampling frequency.
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8.2. Features of the Online Signatures

Figure 8.3: Strokes of the signature shown in Figure 8.2, blocks are in left to right and
top to bottom order.

8.2.2 Features

We use the features to study the structure of the signature and of its strokes from the

various perspectives. Each feature is important for both the registration and verification

steps. Sections 8.3.1 and 8.3.2 explain why they are important and how they do the

work for the signature registration and verification steps. Features are computed over

the dynamics by means of mathematical tools as explained in the following subsection.

8.2.2.1 Features of the Signature

(i) Pen-Up number: Total number of pen-ups done by the user while writing his/her

full signature.

(ii) Path Length(PL): The total path length travelled by the user pen tip during the

signature creation. The device sampling frequency gives the value of all dynamics

in equal interval of time, and the Euclidean distance formula calculates the dis-

tance between two consecutive points of each interval. So, the total path length

of the signature ( PL) is defined by the equation
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n

∑
i=2

√
(xi− xi−1)2 +(yi− yi−1)2, where xi ∈ X and yi ∈ Y.

�
 �	8.1

(iii) Diagonal Length(DL): We take the maximum(xmax,ymax) and minimum(xmin,ymin)

points in X, Y and then by using the Euclidean distance formula for two-dimensional

plane, the equation that defines the diagonal length (DL) is

√
(xmax− xmin)2 +(ymax− ymin)2

�
 �	8.2

(iv) Time Length(TL): The total time in milliseconds that has taken by the user to

write his/her complete signature (the time duration between the first pen down

and last pen up).

(v) Mean Speed(MS): The average speed of the signature. We have four different

dynamics sets (X, Y, TS and P) of equal size. All the points in these sets are

sequential and tracked on the same time interval from the device’s screen. We

calculate the velocity between two consecutive points and then make a sum. After

that, we divide the total sum of the velocities by the total number of points. The

mean speed (MS) is defined by the equation

1
n

n

∑
i=2

√
(xi− xi−1)2 +(yi− yi−1)2

(ti− ti−1)
, where xi ∈ X, yi ∈ Y and ti ∈ TS.

�
 �	8.3

(vi) Covariance-XY(CXY): In order to measure the scatteredness of the points in

signature path, we calculate the Covariance-XY(CXY) by using the statistical

variance equation

1
n

n

∑
i=1

√
(xi)2 +(yi)2, where xi ∈ X and yi ∈ Y.

�
 �	8.4

(vii) Vector Length Ratio (VLR): Each point of the signature captured by the acquir-

ing device has a 4 dimensional representation (X, Y, TS and P), but for the Vector

length ratio (VLR), we only focus on x-axis and y-axis and calculate the sum of
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8.2. Features of the Online Signatures

the length of all the vectors drawn from the origin to each point of (X,Y). Finally,

the sum is divided by (PL). So, the VLR is given by the equation

1
PL

n

∑
i=1

√
(xi− xorigin)2 +(yi− yorigin)2, where xi ∈ X and yi ∈ Y.

�
 �	8.5

8.2.2.2 Features of the Strokes

As previously mentioned, a stroke is a part of a signature. So, it is the subsequence

of a signature sequence and has the same features and dynamics that the signature has

(except the pen-up number because it is a trajectory between the pen down and pen

up). Our goal is to find the ratio between each stroke’s feature to the corresponding

signature’s feature. That gives us an idea how much amount (regarding feature’s unit)

does a single stroke takes to form the full signature.

(i) Path Length Ratio (PLR): The ratio between the total path length of the stroke

over the total path length of the signature that is given by the equation:

PL of the stroke
PL of the signature

�
 �	8.6

(ii) Time Length Ratio (TLR): The ratio between the total time taken by the user to

write the stroke (part of the signature) over the total time length of the signature.

It is given by the equation:

TL of the stroke
TL of the signature

�
 �	8.7

(iii) Diagonal Length Ratio (DLR): We find a single block for the whole signature

after having the maximum(xmax,ymax) and minimum(xmin,ymin) points in X, Y.

Similarly, we find the same kind of block for a stroke. After that, the ratio between

the diagonal length of a stroke block over the signature block is calculated by the

equation
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DL of the stroke
DL of the signature

�
 �	8.8

(iv) Mean Speed Ratio (MSR): The user may move his pen tip with different speed

to write the signature. Most of the users write the signature with different starting

and ending speed. So, the mean speed is different for each stroke. Our target is

to calculate the ratio between the mean speed of a stroke and the mean speed of

the full signature, that is given by the following equation:

MS of the stroke
MS of the signature

�
 �	8.9

(v) Covariance XY Ratio (CXYR): It gives the scatteredness of the point within a

block. So, in some stroke the points may be close to each other and dense as well.

Whereas in some block may not be. So, we calculate the ratio of the scatteredness

of the points in each block over the full signature by using the following equation:

CXY of the stroke
CXY of the signature

�
 �	8.10

(vi) Stroke Vector Length Ratio (STVLR): It gives the ratio between the vector

length ratio of a stroke over the vector length ratio of a full signature by means of

the following expression:

VLR of the stroke
VLR of the signature

�
 �	8.11

8.3 The Signature Verification Algorithm

We describe next the registration and verification process from a technical perspective.

8.3.1 Signature Registration Phase

In this phase, the system takes the user’s genuine signatures as input and generates the

biometric template of the features with the following steps.
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8.3. The Signature Verification Algorithm

8.3.1.1 Acquisition and Pre-processing

In the acquisition phase, the user has to write the signatures with the same number of

pen ups for three rounds as input. In each round, whenever the signature is captured

from the screen, the pre-processing starts immediately. Then, the system eliminates the

noise, normalizes the path and all kind of features are calculated and then checked with

the features of existing signatures. In the checking process, the signature should have

exactly the same number of pen ups. The area covered by the signature and its length

depend on the screen sizes. Since various devices may have different screen sizes, the

feature values PL, DL, TL, MS, CXY, VLR, PLR, DLR, TLR, MSR, CXYR, STVLR

depend on the screen pixel density.

In addition, it is almost impossible to write the signature with the same dynamics

and features as before. But it is possible to write a signature, that is similar to the

previous signature up to a certain percentage. So, for the very first time, the user is

totally free to write the signature as he/she wants. But at the second time, the signature

has to match the first signature up to a certain level. Similarly, the third signature has to

match the first and the second signature up to the certain tolerance factor. For example,

during the first signature, the user may write a vertical line and at the second time,

instead of writing a vertical line he/she may write a horizontal line with same speed,

length and time. Topologically both of those lines are similar, but in practice, they

are different. The X-length, Y-length and diagonal length take the control and reject

the second signature. For this reason, each feature should be similar to the features

of existing signatures and their corresponding strokes up to a certain tolerance factor.

Otherwise, the user has to write the signature again for that round.

8.3.1.2 Template Generation and Store

Once the pre-processing is completed, then the system has the features and dynamics

of three different signature samples. So in this step, we calculate the average of each

feature as follows:
1
3

3

∑
i=1

Feature(i) and create an interval for each feature with its aver-

age value up to a certain threshold factor.
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Normalize and 
calculate all features
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?

Yes No
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Fail

Figure 8.4: Flowchart for signature registration.

We also use the dynamic time warping (DTW) for the template generation and sig-

nature verification process. In time series analysis, dynamic time warping [124] is an

algorithm for measuring similarity between two temporal sequences which may vary in

time or speed. In addition it has also been used for partial shape matching applications.

Moreover, it has been successfully used in literature for both on-line and off-line HSV

[55, 122, 134] (For the details of DTW algorithm, please refer to Appendix Section A.4).

There are different kinds of algorithms to check the similarity between the se-

quences like Frèchet distance but we use DTW. This is because of its high accuracy

and efficiency (in terms of computational time) which is well suited for our algorithm

that is specially designed for mobile devices.
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8.3. The Signature Verification Algorithm

Figure 8.5: Maximum match between two different time series by using DTW, source
[124]

Calculate the average 
of all features

Temporarily saved 
signatures

Use DTW and calculate 
the matchable distance

Store the template and
Signatures

Figure 8.6: Flowchart for Template generation phase.

8.3.2 Signature Verification Phase

In the verification phase, the system makes the decision on whether the claimed signa-

ture is genuine or forged. We already calculated the accepted interval for each feature

in the template generation phase. The steps for the verification process are as follows:
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8.3.2.1 Check with Global Features of the Signature

(i) Check with Pen up Number: If the claimed signature has a different number of

pen-ups, then it will be rejected.

(ii) Check with all features of the signature, PL, DL, TL, MS, CXY and VLR respec-

tively:

If each feature of the claimed signature does not fall in its corresponding interval

generated by template generation step, then it will be rejected.

8.3.2.2 Check with Features of the Strokes

The claimed signature may have more than a single stroke. For every stroke, the system

checks all the features, TLR, DLR, MSR, CXYR and STVLR. Each feature should lie

in the corresponding interval that was generated at the template generation phase. The

system counts how many strokes pass the test. If this percentage is lower than a certain

threshold then the signature is rejected.

8.3.2.3 Check with DTW

If the claimed signature passes all the above verification steps, then DTW is applied on

it as follows.

Let m be the total number of strokes in a single signature. Then by using the feature

of each signature, the following m-dimensional vector is computed. Let the ith stroke

(related to feature f of signature) of the jth signature in a 1D time series be denoted as

Si
j. DTW(Si

j,S
i
k) denotes the 1D DTW method applied to the ith segments of the jth and

kth signatures.

∥∥∥∥∥∥∥∥
f 1

f 2

...
f m

∥∥∥∥∥∥∥∥=
∥∥∥∥∥∥∥∥∥∥∥∥∥

DTW(S1
1,S

1
2)+DTW(S1

1,S
1
3)+DTW(S1

2,S
1
3)

3
DTW(S2

1,S
2
2)+DTW(S2

1,S
2
3)+DTW(S2

2,S
2
3)

3
...

DTW(Sm
1 ,S

m
2 )+DTW(Sm

1 ,S
m
3 )+DTW(Sm

2 ,S
m
3 )

3

∥∥∥∥∥∥∥∥∥∥∥∥∥
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8.3. The Signature Verification Algorithm

When
∥∥ f
∥∥ vector is computed for each feature f , we get a

∥∥X
∥∥ vector (x coordinates),

a
∥∥Y∥∥ vector (y coordinates), a

∥∥P
∥∥ vector (P coordinates), and a

∥∥T
∥∥ vector (T S

coordinates).

Finally, we combine the metrics with the following sums,∥∥∥∥∥∥∥∥
d1

d2

...
dm

∥∥∥∥∥∥∥∥=
∥∥∥∥∥∥∥∥

X1 +Y 1 +P1 + ...+T 1

X2 +Y 2 +P2 + ...+T 2

...
Xm +Y m +Pm + ...+T m

∥∥∥∥∥∥∥∥

The output distance vector
∥∥d
∥∥ represents the “distance” among the three signa-

tures. The whole process is repeated twice; the first time between the genuine registered

signatures (
∥∥dg
∥∥ as output, which is already calculated during the template generation

phase) and the second time between the claimed signature and registered signatures

(
∥∥dv
∥∥ as output). In the template generation phase, we also calculated the interval by

using the threshold factor in
∥∥dg
∥∥. So if

∥∥dv
∥∥ does not lie in that interval, then the

claimed signature is rejected, otherwise accepted.

Now, we describe our algorithm. We present several samples of genuine and forges

signatures by Figure 8.8. First, the total pen up number is considered. If the signature

to be verified has a different number of pen-ups, then the signature is assumed to be a

forgery. If the forger writes the signature very fast then he/she produces the better line

quality with less accuracy. Similarly, if he/she writes very slowly then the signature

may be more accurate but the line quality is poor, and the time length is unnaturally

high. So in either case, our algorithm works because of TL.

During the template generation phase, the user is totally free to write the genuine

signature on the device screen. So, we calculate the Features and DL for his/her sig-

nature from the device perspective. Now, if the forger writes the signature on all the

available area then it has a very high value in Features and DL. Similarly, if he/she

writes in a small area then it will have very low Features and DL. In either case the

algorithm works to rejects it.
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Signature to verify

Check with pen up number

Check with global features
(PL, DL, TL,MS, CXY, VLR)

Check with stroke features
(PLR, DLR, TLR,MSR, CXYR, STVLR)

Check with DTW

Verified Rejected

End

Pass

Pass

Pass

Pass

Fail

Fail

Fail

Fail

Figure 8.7: Flow chart for the verification process.

Even if the forger writes the signature within a given area with expected length and

time. Still, it is tough to write the signature with tolerable MS. Whereas the real user

can write his/her signature within the acceptable interval of MS. So our algorithm can

easily recognize the forger’s speed and rejects his/her attempt.

CXY measures the scatter value of all points in a signature that are distributed on

the device screen. So, even if the forger writes a signature matching PL, TL, MS,

it is unlikely to match the distribution of the points with the genuine signatures. So,

whenever his/her signature does not match the CXY then our algorithm detects that it

is a forgery. The VLR tides the signature points with its path length and measures the

trend of the points and its quality. If the signature to be checked has a different trend as
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Figure 8.8: Samples of genuine and forgery signatures

compared to the registered template, then it is rejected.

A signature may have multiple strokes, and each stroke has the features (PL, TL,

DL, MS, CXY and VLR ), because it is just a subsequence of the signature sequence.

The features of each stroke are different from each other. So, our algorithm calculates

all the features of each stroke and then finds out its ratio with respect to the whole

signature. So, even if the forger is able to write a signature that passes the all global

features test successfully, still, if it does not pass the stroke ratio verification process,

that includes the (PLR, TLR, DLR, MSR, CXYR and STVLR ) then the signature is

rejected.

Finally, if the forgery passes all the global and stroke feature tests, then, the signa-
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ture undergoes DTW testing. DTW compares the similarity between two sequences. We

find out two distance vectors:
∥∥dg
∥∥ represents the “distance” among the three genuine

signatures, while
∥∥dv
∥∥ represents the “distance” among three genuine with claimed sig-

nature. If
∥∥dv
∥∥ does not lie in the interval which is calculated on the basis of

∥∥dg
∥∥ by a

certain threshold at the template generation phase, then it is rejected as a forgery.

8.4 Experiment

In this section, we present the implementation prototype and the experimental results

concerning identity verification with our system.We implemented our algorithms in Java

and tested on Android version ≥ 4.0. Figure 8.9 represent the class diagram for imple-

mentation prototype. The accuracy of a recognition algorithm is generally measured in

terms of two potential types of errors: false negatives (fn) and false positives (fp). fp

are cases where a claimed identity is accepted, but it should not be, while fn are cases

where a claimed identity is not accepted, while it should be. The frequency at which

false acceptance errors occur is denoted as False Acceptance Rate (FAR), while the fre-

quency at which false rejection errors occur is denoted as False Rejection Rate (FRR).

Two metrics building on true/false positives/negatives (tp,fp,tn,fn) are widely adopted:

precision and recall. Recal (RCL) = t p/(t p+ f n) is the probability that a valid identity

is accepted by the system (i.e., true positive rate) while precision (PCR) = t p/(t p+ f p)

is the probability that a claimed identity which is accepted by the system is valid. F-

measure (FMR) = (2× prec× recall)/(prec+ recall), which is the harmonic mean of

precision and recall, that combines both metrics into a global measure.

TF PCR RCL FMR FRR FAR

34% 0.983 0.919 0.943 0.008 0.008

35% 0.969 0.934 0.945 0.014 0.065

36% 0.953 0.936 0.936 0.021 0.063

Table 8.1: PCR, RCL, FMR, FAR and FRR as a functions of a tolerance factor (TF).

A threshold on the similarity score must be identified for determining whether two
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signatures are similar (accept the identity) or significantly different (reject the identity).

The higher the threshold, the higher the precision (i.e., the lower the risk of accepting

invalid identities). However, a high threshold also decreases the recall of the system

(i.e., the higher the risk to reject valid identities).

Figure 8.9: Implementation prototype of our algorithm

The performance of the proposed scheme has been assessed in terms of PCR, RCL,

FAR, FRR and FMR on three different datasets: on the SigComp2011 Dutch and Chi-

nese datasets [110]; on the SigComp2013 Japanese dataset [113]. We start by describing

the experimental set-up. Several mobile devices have been involved in our experiments

(i.e., Google Nexus 5, GalaxyS2, XperiaZ2 and ZTE Blade A430), along with several

standard datasets. The specification of the datasets involved are as follows:

• The SigComp2011 [110] competition involved (online) dutch and chinese data.

The purpose of using these two data sets was to evaluate the validity of the par-

ticipating systems on both Western and Chinese signatures. Signature data were
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Figure 8.10: Average value for Chinese Signature

acquired using a WACOM Intuos3 A3 Wide USB Pen Tablet and collection soft-

ware, i.e., MovAlyzer.

– Dutch Dataset. The dataset is divided in two non-overlapping parts, a train-

ing set (comprised of 10 authors with 330 genuine signatures and 119 forg-

eries) and a test set (comprised of 10 authors with 648 genuine signatures

and 611 corresponding forgeries).

– Chinese Dataset. The dataset is divided in two non-overlapping parts, a

training set (comprised of 10 authors with 230 genuine signatures and 430

forgeries) and a test set (comprised of 10 authors with 120 genuine signa-

tures and 461 corresponding forgeries).

• The SigComp2013 [113] competition involved (online) data collected by PRre-

searchers at the Human Interface Laboratory, Mie University Japan.

– Japanese Dataset. The signature data were acquired using a HP EliteBook

2730p tablet PC and self-made collection software built with Microsoft INK

SDK. The whole dataset consists of 1260 genuine signatures (42 specimen-

s/individual) and 1080 skilled forgeries (36 specimens/forgery). The dataset

is divided in two non-overlapping parts, a training set (comprised of 11 au-
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Figure 8.11: Average value for Dutch Signature

thors with 42 genuine signatures of each author and 36 forgeries per author)

and a test set (comprised of 20 authors with 42 genuine signatures each and

36 corresponding forgeries per author).

The experimental results in terms of PCR, RCL and FMR (that vary according to

the chosen thresholds) have been used for tuning the thresholds in order to get better

performance. We did the experiment from 5% to 150% threshold to find the best so-

lution. In the datasets, single users have genuine signatures with a different Pen-Up

numbers. We grouped the genuine signature by the number of Pen-Ups and then gener-

ate a template. Later on, when we perform the signature testing operation, we identify

the corresponding group for that user by Signature Pen-Up number.The main results of

our findings are discussed in the remainder of this section.

Figure 8.8 is the samples of genuine and forgery signatures for different datasets.

The algorithm is based on the signature pattern. We observed that, in general, signatures

from the same language have similar patterns. So, the average value for a dataset from

one language may differ to datasets from other languages. Figures 8.10, 8.11 and 8.12

plot the average of Chinese, Dutch and Japanese datasets respectively. As it can be seen

from those figures, the best tolerance factor for Chinese dataset is 47%. Similarly, 37%
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Datasets
Experimental details

Samsung
Galaxy S2

Plus

Sony-
Xperia

Z2

ZTE Blade
A430

LG-Nexus
5

Average

Chinese 0.47 0.08 0.10 0.04 0.17

Dutch 0.98 0.22 0.27 0.11 0.40

Japanese 4.36 1.00 1.94 0.80 2.03

Average 1.94 0.43 0.77 0.32 0.87

Table 8.2: Computational time of datasets in different mobile devices, time is in seconds

and 33% for Dutch and Japanese datasets respectively. The average for each dataset has

calculated from the sample of both genuine and forgery signatures of users. After that,

we calculated the best threshold for overall datasets.

Figure 8.13 plots the PCR, RCL and FMR as a function of the chosen tolerance fac-

tor, i.e., the threshold reported in Table 8.1. That shows the results related to precision,

recall, f-measure, FAR, and FRR for values which maximize the f-measure. The best

results for average were achieved using a 35% tolerance factor.Claimed identities are

accepted whenever the score is above the threshold, rejected otherwise. The higher the
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Figure 8.14: Computational time of datasets in different mobile devices, time is in
seconds.

threshold, the higher the precision, but the lower the recall.

Finally, we address the computational overhead. We stress that the overall running

time is important, since in many applications handwritten signatures could be decoded

on low-end devices, such as mobile phones or tablets. Figure 8.14 plots the average

of computational time taken by different devices for all datasets reported in Table 8.2.
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Similarly,The plots of Figure 8.15 represent the scatterplot matrix of the computational

time for different mobile devices, box indicates the lower quartile, median, upper quar-

tile, and whisker represents the smallest and largest observation (Graph is generated

by the Statgraphics Software). It shows that even low-end devices (such as Samsung

Galaxy S2) are able to verify the signature quickly (i.e., in a few seconds), while devices

with high performance (such as Google Nexus 5) are really fast in verifying signatures

(i.e., in a few hundreds of milliseconds).

Figure 8.15: Computational time for different mobile devices
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9
Conclusion

In this thesis, we analyzed the design space of recent algorithms that perform well in

practice in the field of “Graph Connectivity” and “Authentication System”. In addition,

we also composed the techniques and presented some novel algorithms to solve the few

problems efficiently in those areas.

We implemented and then explored the merits and weaknesses of the algorithms

that evaluate the structure of Graph Connectivity in practice by conducting a thorough

empirical analysis. We first presented an algorithm to compute the loop-nesting tree of

a dense graph based on the algorithm available in [30]. We compared the algorithms

that compute the 2-edge-connected blocks, 2-vertex-connected blocks, and 2-vertex con-

nected components respectively. In addition, we presented a new algorithm to compute

the most critical node of a directed graph in a linear time. With respect to the Authenti-

cation Systems, we presented a new authentication system, which is especially suitable

for the mobile devices with low hardware configuration. We are going to summarize

the main results achieved as following.

• We presented a new memory efficient version of an algorithm to compute the loop

nesting forest of a directed graph, which is derived from the single pass Tarjan’s

Streamline version [30]. The experimental reports proved that it worked well for

the dense graph.

• We performed a thorough experimental study of the linear time O(m+n) (m and n

are the size of edges and vertices respectively) algorithms to compute the 2-edge

connected blocks of a digraph, presented in [71], and in [73]. Moreover, we also

designed a memory efficient version, which derived from the algorithm available

in [73]. Analytical reports show that the algorithm presented in [73] does not
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depend on the graph structure so that it pays off over the algorithm presented in

[71]. Our memory efficient algorithm also produced the better result for the dense

graph and did not have any relation with the Graph structure.

• We have implemented the algorithm that compute the 2-vertex connected blocks

of a digraph in linear time, available in [72] and [73]. We also presented a memory

efficient version of an algorithm proposed in [73]. The experimental evaluation

showed that the graph connectivity structure is directly proportional to the algo-

rithm presented in [72], and does not have any relation to the algorithm given

in [73]. Therefore the algorithm available in [73] produce consistent result com-

pared to the algorithm available in [72]. Our memory efficient version has the

consistent and better results for the dense graphs. We believe that our memory

efficient version will alleviate the loop nesting computation to the consistent level

even if the graph density increases.

• We analyzed the recent algorithms that compute the 2-vertex connected compo-

nent of a directed graph. In particular, we implemented the algorithms available in

[83], and in [44]. We also presented a new hybrid algorithm. After a thourough

empirical study, our experimental reports showed that the algorithm presented

in [44] performed better than the algorithm available in [83] for the real-world

graph. However, the algorithm available in [83] has much better performance

than the algorithm proposed in [44] for some special type of artificial graphs.

Our hybrid algorithm produces the in-between results. We believe that, this com-

parative observation will help to choose the suitable algorithms for the real-life

application according to the target area.

• We presented the first linear time algorithm to compute the most critical node

of a directed graph. In addition, we also designed the two more heuristics. We

implemented our algorithm and heuristics and other available famous heuristics

such as maximum-degree, Page Rank, Betweenness Centrality, then performed

an experimental evaluation. The empirical investigation proved that our linear

time algorithm produces the better result than the other heuristics, both regarding
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solution quality, and running time. We hope that our pioneer algorithm will be

the milestone to solve the most critical node problem in directed graph.

• We presented a new Authentication System by online handwritten signature, whose

novelties lie mainly in the following aspects. First, we proposed a method for the

verification of signature features which is compatible with a broad range of low-

end mobile devices (concerning computational overhead and verification accu-

racy), so that no special hardware is needed. Secondly, our new method makes use

of several technical features that, to the best of our knowledge, have not been pre-

viously used for handwritten signature recognition. We implemented and tested

the signatures dataset from various languages in the mobile devices with small

hardware configuration. The experimental observation report confirms that our

method achieved 95% efficiency in terms of accurate recognition for the Chinese,

Japanese, and Dutch signatures in less than a second. The result is impressive, es-

pecially when the limited computational power of mobile devices is considered.

We belive the work presented will be helpful in advancing the authentication sys-

tem for low-end devices.
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9.1 Open Problems

We are going to leave few open questions, which are listed as following.

• As we see in Chapter 4, and 5, the best current bound to compute the 2-vertex-

connected (resp., 2-edge-connected) blocks of a directed graph is linear time

O(m+n). In addition, we explained in Chapter 6 that the best current bound for

2-vertex-connected (resp., 2-edge-connected) components of a digraph is O(n2).

Therefore, we leave as an open question whether one can compute also the 2-

vertex-connected components and 2-edge-connected-components in linear time.

• We presented the first non-trivial linear-time algorithm to calculate a most critical

node for unweighted directed graphs. We wonder whether is it possible to extend

the same algorithm within the same time bound (i.e., linear) for a weighted di-

rected graph.
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Appendix

A.1 Asymptotic Notations

Several algorithms are available to solve a single problem. Asymptotic notation help

to identify the growth order of running time of an algorithm, which analyzes the algo-

rithm’s efficiency.

A.1.1 Big O Notation

Big O notation is the formal way to express the upper bound of an algorithm’s running

time. It is the efficiency notion of an algorithm on the basis of algorithm’s worst case

instance (i.e., maximum amount of time can be taken by an algorithm to solve a prob-

lem). Let us consider that f (n) and g(n) be two non-negative functions, then the Big O

notation between f (n) and g(n) is defined as following.

f (n) = O(g(n)) ⇐⇒ {∃c,n0 ∈ N such that 0≤ f (n)≤ c.g(n),∀n≥ n0}

In general, most of the algorithms efficiency are compared on the basis of Big O nota-

tion.

In typical usage, the Big O notation for a function f is derived by the following

simplified rules rather than using the above formal definition.

(i) If f (x) is a sum of several terms and there exists a term T with largest growth

rate, then T is what determine the growth rate of f (x).

(ii) If T is a product of several factors, any constants in T that do not depend on x can

be omitted.

Example: Let us consider a function f (x) = 3x4−2x3+x2+4, and suppose we wish

to simplify the f (x) to describe its growth rate as x→ ∞ by using Big O notation.
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According to rule (i): f (x) is the sum of four terms, 3x4, −2x3 , x2 and 4. Thus, we

select the term which is largest growth rate of x (i.e. which has the largest exponent of

x) and others are ommitted. Therefore, the selected term is 3x4.

Again, by using rule (ii): 3x4 is a product of two factors 3 and x4, where the first factor

3 does not depend on x. Hence, by omitting this constant factor, the simplified form of

the result is x4.

Thus, we say that f (x) is a O(x4), or f (x) = O(x4).

We can confirm this calculation by using the formal definition as following:

Let f (x) = 3x4−2x3 + x2 +4 and g(x) = x4.

Now, we have to find out the c and x0 ∈ Z+ such that ∀x≥ x0, 0≤ f (x)≤ c.g(x) holds.

There can be many c and x0, for example, few of them are as follows. x0 = 1 and c = 6,

x0 = 2 and c = 3, x0 = 3 and c = 3, and so on.

A.1.2 Big Ω Notation

BigΩ represents the best case scenario of an algorithm or the lower bound of the growth

rate of an algorithm’s running time. Let us consider the two non-negative functions f (n)

and g(n), then the Big Ω between f (n) and g(n) is defined by

f (n) = Ω(g(n)) ⇐⇒ {∃c,n0 ∈ Z+ such that 0≤ c.g(n)≤ f (n),∀n≥ n0}.

A.1.3 Big Θ Notation

Big Θ denotes the asymptotically tight bound (lower and upper) on the growth rate

of the running time of an algorithm. So it defines the exact asymptotic behavior. For

example, let us consider the two non-negative functions f (n) and g(n), Then we can

define the Big Θ notation between f (n) and g(n) as following

f (n)=Θ(g(n)) ⇐⇒ {∃c1,c2,n0 ∈Z+ such that 0≤ c1.g(n)≤ f (n)≤ c2.g(n),∀n≥ n0}.

A.1.4 Small o Notation

Small o notation denotes the upper bound (that is not asymptotically tight) of the growth

rate of the running time of an algorithm. If f (n) and g(n) are two non-negative functions
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and f (n) = o(g(n)), then g(n) is the upper bound for f (n) but f (n) can never equal to

g(n).

f (n) = o(g(n)) ⇐⇒ {∃c,n0 ∈ Z+ such that f (n)< c.g(n),∀n≥ n0}.

The main difference between the Big O-notation and small o-notation is explained be-

low.

In Big O-notation, if f (n) = O(g(n)), then the bound f (n) ≤ c.g(n) holds for

some constant c > 0.

But in small o-notation, if f (n) = o(g(n)), then the bound f (n) < c.g(n) holds

for all constants c > 0.

A.1.5 Small ω Notation

Small ω notation is used to denote the lower bound (that is not asymptotically tight) of

the growth rate of runtime of an algorithm. Let us consider that f (n) and g(n) be two

non-negative functions and f (n) = ω(g(n)), then g(n) is the lower bound for f (n) but

g(n) never equal to f (n).

f (n) = ω(g(n)) ⇐⇒ {∃c,n0 ∈ Z+ such that f (n)> c.g(n),∀n≥ n0}.

We are going to give the major difference between Big Ω-notation and small ω-notation

as following:

In Big Ω-notation, if f (n) = Ω(g(n)), then the bound f (n) ≥ c.g(n) holds for

some constant c > 0.

Whereas, in small ω-notation, if f (n) = ω(g(n)), then the bound f (n) > c.g(n)

holds for all constants c > 0.

A.1.6 Summary

For the two non-negative functions f (x) and g(x), we summarized the asymptotic rela-

tions between them in Table A.1 given below.
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Asymptotic notation Bound definition Limit definition

f ∈ O(g) f ≤ g lim
x→∞

f (x)
g(x)

< ∞

f ∈ Ω(g) f ≥ g lim
x→∞

f (x)
g(x)

> 0

f ∈ Θ(g) f = g lim
x→∞

f (x)
g(x)

∈ R> 0

f ∈ o(g) f < g lim
x→∞

f (x)
g(x)

= 0

f ∈ ω(g) f > g lim
x→∞

f (x)
g(x)

= ∞

Table A.1: Summary of the asymptotic notations.
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A.2 Missing Functions and Equations

A.2.1 Menger’s Theorem

In 1927, the Austrian Mathematician Karl Menger state a theorem to characterize the

connectivity of graphs in terms of the minimum number of disjoint paths that can be

found between any pair of vertices. Menger theorem[121] shows one of the most fun-

damental results in graph theory stated as following.

Theorem A.2.1. (Menger’s Theorem [121]) Let G=(V,E) be a directed multigraph and

let u,v ∈V (G) be a pair of distinct vertices. Then the following holds:

(a) The maximum number of arc-disjoint (u,v)-paths equals the minimum number

of arcs covering all (u,v)-paths and this minimum is attained for some (u,v)-cut

(X , X̄).

(b) If the arc uv is not in E(G), then the maximum number of internally disjoint

(u,v)-paths equals the minimum number of vertices in a (u,v)- separator.

Proof. Please refer to [121] (in German) or to [20, pg.353] in English.

A.2.2 Ackermann Functions

In the field of Computational theory, Ackermann functions are well known simple ex-

amples of computable (implementable using a combination of while/for-loops) but not

primitive recursive (implementable using only a FINITE number of do-while/for-loops)

functions [99]. It is an equation discovered by Wilhelm Ackermann in 1928, state

as following. “All primitive recursive functions are total and computable but all to-

tal computable functions need not to be primitive recursive”. The original function is

published by Ackermann [1] (in German Language), which requires three nonnegative

integers for its arguments as following:
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ϕ(0,m,n) = m+n

ϕ(1,m,0) = 0

ϕ(2,m,0) = 1

ϕ(p,m,0) = m if p > 2

ϕ(p,m,n) = ϕ(p−1,m,ϕ(p,m,n−1)) in general

�
 �	A.1

Equation A.1 is extended through the Hyperoperation as following.

Hyperoperation. Hyperoperation is a function Hn(x,y), and defined recursively with

two integers arguments as following:

H0(x,y) = y+1

H1(x,0) = x

H2(x,0) = 0

Hn(x,0) = 1 for n > 2

Hn(x,y) = Hn−1(x,Hn(x,y−1)) for integers n > 0 and y > 0.

Consequently:

H0(x,y) = y+1 is the successor function on y.

H1(x,y) = x+ y is addition.

H2(x,y) = x× y is multiplication.

H3(x,y) = xy is exponentiation.

H4(x,y) = is tetration (a height-y exponential tower xxx...

, we shall denote by

Knuth’s up-arrow notation)

...

and so on.
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Knuth’s up-arrow notation This is a method to denote the large integers, introduced

by Donald Knuth in 1976, defined as following:

i. a ↑ b = ab = a×a× . . .×a︸ ︷︷ ︸
b times

ii. a ↑↑ b = ba = aaa...︸︷︷︸
b times

= a ↑ (a ↑ (. . . ↑ a)) = a ↑ (a ↑ (. . . ↑ a))︸ ︷︷ ︸
b times

For example:

i. 2 ↑ 3 = 2×2×2︸ ︷︷ ︸
3 times

= 8

ii. 2 ↑↑ 3 = 32 = 222︸︷︷︸
3 times

= 2 ↑ (2 ↑ 2)︸ ︷︷ ︸
3 times

= 16.

Let go back to the hyperoperation, if we extend the hyperoperation for negative-order

by recursive formula, then

H0(x,y) = H−1(x,H0(x,y−1)) = H−1(x,y).

Therefore, H−n(x,y) = H0(x,y) for every non-negative n.

Similarly, if we compare the equation A.1 with the hyperoperation, then we will get

the following:

H(0,m,n) = m+1

H(1,m,0) = m

H(2,m,0) = 0

H(p,m,0) = 1

Then, we have the Ackermann function variants are 3-argument functions, and the equa-

tion A.1 satisfies the following recurrence relation.

ϕ(1,m,n) = m∗n

ϕ(2,m,n) = mn
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As we see, the family of Ackermann functions can be simplified by omitting the m vari-

able of the 3-argument function by making them into two arguments. The 2-argument

Ackermann function would be then a function satisfying the recurrence relation:

f (p,n) = f (p−1, f (p,n−1))
�
 �	A.2

Many authors modified the original Ackerman’s equation A.1 to fit it for different pro-

pose as like in equation A.2. Nowadays, “the Ackermann function” may refer to any of

numerous variants of the equation A.1, the most common version is the two-argument

Ackermann-Péter function which exactly follows the equation A.2 as following.

A(m,n) =


n+1 if m = 0

A(m−1,1) if m > 0 and n = 0

A(m−1,A(m,n−1)) if m > 0 and n > 0.

�
 �	A.3

Example:

A(1,2) = A(0,A(1,1))

= A(0,A(0,A(1,0)))

= A(0,A(0,A(0,1)))

= A(0,A(0,2)) { since m = 0, ∴ output = n+1 }

= A(0,3) similar to above step

= 4 { same to the previous step }

Similarly, we can get

i. A(4,3)≈ 2265536

ii. A(4,4) = 16 ↑↑ 16

It may not be directly obvious that the evaluation of A(m,n) always terminates. How-

ever, in each recursion either m remains the same and n decreases or m decreases. Each

time that n reaches zero, m decreases, so m eventually reaches zero as well. Therefore,

we can say that the recursion has bounded. The equation A.3 give an idea that how it is

recursive and bounded.
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A.2.3 Inverse Ackermann Function.

Since the Ackermann function f (n) = A(n,n) grows very quickly, its inverse function,

f−1 (denoted by α), grows very slowly. In fact, α(n) < 5 for most of the input size

n, because as we see from equation A.3 with increasing input size m, n, the function

α(n) decreases. This inverse appears in the time complexity of some algorithms, such

as disjoint-set data structure, Lengauer and Tarjan’s algorithm to compute the domina-

tor tree in flow graph, Tarjan’s algorithm to compute the loop nesting forest in a flow

graph, Chazelle’s algorithm for minimum spanning trees, and etc. The two-parameter

variation of inverse Ackermann function can be defined as following:

α(m,n) = min{i≥ 1:A(i,bm/nc)≥ log2 n} , where bxc is the floor function.

This function gives the refined time bound for the precise analyses of the algorithms. In

the disjoint-set data structure, m represents the number of operations while n represents

the number of elements; in the minimum spanning tree algorithm, m represents the

number of edges and n represents the number of vertices. Because of its definition

in terms of extremely deep recursion, it can be used as a benchmark of a compiler’s

ability to optimize recursion [150]. For more information, please refer in [94, p.60],

[54, p.255].
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A.3 Missing Algorithms

A.3.1 Random Access Model

Random Access Machine (RAM) is a tool to measure the efficiency of an algorithm in a

machine-independent way. It allows us to compare the algorithms by their performance.

The smallest unit of the memory is a register, and an array of cells, each of them has

a unique integer address. Furthermore, both the register and a cell have the capacity

to store a single integer value or a real number of sized bounded by the world length,

called parameter of the model. In RAM, memory consists of an unbounded sequence

of registers, each of which is capable of holding an integer. The arithmetic operations

are allowed to compute the address of a memory register. RAM consists of a fixed

program, where each instruction will be executed one after the other, i.e., no concurrent

operations. Usually, It is assumed that the size of a register is bounded by O(logn) bits,

where n is the input size of the problem. The instruction contains either arithmetic or

logical operation. During the execution of an instruction, it needs to use the contents

of the registers or cells, therefore, either it loads the contents of a single memory cell

into a register, or store the contents of a register to a memory cell. The load and store

operations can recognize the respective memory by the address. We determine the

running time of an algorithm by the number of time steps needed to execute to complete

the given instruction. In this model, each simple operation requires a unit time step and

each memory access also needs a unit time step. In general, we already assure that

there is no shortage of memory. Nevertheless, Subroutines and Loops are not simple

operations. (See also 76, pg.133 and [38].)

A.3.2 Pointer Access Model

The pointer machine model (PAM) [22, 100, 102, 143, 164] differs from RAM in mem-

ory organization; In particular, PAM consists of an unbounded collection of registers,

which are connected by pointers. Each register can contain an arbitrary amount of ad-

ditional information but we cannot perform the arithmetic operations to compute the
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address of register, because the only way to access a register is by following pointers.

Nodes manage the pointers in PAM, and hence memory of a PAM consists of an extend-

able collection of nodes. Each node can store the finite number of fields, and each field

can store either a number, which will use in computation or pointer to a node. Concern-

ing the running time complexity, creating a memory node takes a one-time step, and

accessing a memory node given to that pointer also takes the one-time step. Normally,

among the pointer-based algorithms, two different classes were defined, specifically

for set union problems: separable pointer algorithms [164] and non-separable pointer

algorithms [119]. (See also [19, chap. 5] and [76, pg.133].)

A.3.3 Tree Traversal

Tree Traversal methods are the fundamental strategies in most of the graph algorithms.

It can be stipulated by the ordering of three different objects, (i) current node, (ii) left

subtree and (iii) right subtree. We assume that the left subtree always comes before

the right subtree. Then there are three different ways to travel, pre-order, in-order,

and post-order. All of these ways are referred to as depth-first-search, where we have

to search the tree as deep as possible on each child before going to the next sibling.

For each node, N, the general recursive traveling technique in any non-empty tree is

processed as following:

(a) (L) Traverse its left subtree recursively, when the step is finished then back to N

again.

(b) (R) Traverse its right subtree recursively, when the step is finished then back to N

again.

(c) (N) Process then the node N itself.

Then the traveling methods can be defined as following:

i. Preorder: The order sequence is: the current node, the left subtree, the right

subtree (NLR).
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T
1

5

3

8

4

6

2

9 10

7

Figure A.1: Tree traversal example.

ii. Inorder: The order sequence is: the left subtree, the current node, the right subtree

(LNR).

iii. Postorder: The order sequence is: the left subtree, the right subtree, the current

node (LRN).

Example, Let us consider a tree shown in Figure A.1 and start to traverse by all

methods that defined before. We get the following sequences.

i. Preorder: 1,2,3,5,8,9,6,10,4,7.

ii. Inorder 2,1,8,5,9,3,10,6,7,4.

iii. Postorder: 2,8,9,5,10,6,3,7,4,1.
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A.4 Dynamic Time Warping

Dynamic time warping (DTW) is a well-known technique to find an optimal align-

ment between two given (time-dependent) sequences as shown in Figure A.2. It com-

pares two (time-dependent) sequences X := (x1,x2, . . . ,xN) of length N ∈ N and Y :=

(y1,y2, . . . ,yM) of length M ∈ N. These sequences are sampled at equidistant points in

time. Let F be a feature space. Then xn,ym ∈ F for n ∈ [1:N] and m ∈ [1:M]. To

compare two different features x,y ∈F , one needs a local cost measure (also referred

to as local distance measure), which is defined to be a function

c : F ×F → R≥0

�
 �	A.4

Figure A.2: Time alignment of two time-dependent sequences Aligned points are indi-
cated by the arrows, source [124]

Typically, c(x,y) is directly proportional to the similarity between x and y. It means

that c(x,y) is small (low cost) if x and y are similar to each other, and otherwise

c(x,y) is large (high cost). Evaluating the local cost measure for each pair of ele-

ment of the sequences X and Y , one obtains the cost matrix C ∈ RN×M defined by

C(n,m) := c(xn,ym). Hence, the goal is to find an alignment between X and Y having

minimal overall cost. We can find many scholarly articles about dynamic time warping.

Here, we are presenting that how it works in the application scenario, which is taken

from Müller [124] and also used in our Handwritten Online Signature Algorithm.
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Definition A.4.1. An (N,M)-warping path (or simply referred to as warping path if N

and M are clear from the context) is a sequence p = (p1, . . . , pL) with pl = (nl,ml) ∈

[1:N]× [1 : M] for l ∈ [1:L] satisfying the following three conditions.

(i) Boundary condition: p1 = (1,1) and pL = (N,M).

(ii) Monotonicity condition: n1 ≤ n2 ≤ . . .≤ nL and m1 ≤ m2 ≤ . . .≤ mL.

(iii) Step size condition: pl+1− pl ∈ {(1,0),(0,1),(1,1)} for l ∈ [1:L−1].
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Figure A.3: Illustration of paths of index pairs for some sequence X of length N = 9
and some sequence Y of length M = 7. (a) Admissible warping path satisfying the
conditions (i), (ii), and (iii) of Definition A.4.1. (b) Boundary condition (i) is violated.
(c) Monotonicity condition (ii) is violated. (d) Step size condition (iii) is violated,
source [124]

Note that, the step size condition (iii) implies the monotonicity condition (ii). An

(N,M)-warping path p= (p1, . . . , pL) defines an alignment between two sequences X =

(x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yM) by assigning the element xn of X to the element

ym of Y . The boundary condition (i) enforces that the first elements of X and Y as well

as the last elements of X and Y are aligned to each other. In other words, the alignment

refers to the entire sequences X and Y . The monotonicity condition (ii) reflects the

requirement of faithful timing: if an element in X precedes a second one this should

also hold for the corresponding elements in Y , and vice versa. Finally, the step size

condition (iii) expresses a kind of continuity condition: no element in X and Y can be
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omitted and there are no replications in the alignment (in the sense that all index pairs

contained in a warping path p are pairwise distinct). Figure A.3 illustrates the three

conditions.

The total cost cp(X ,Y ) of a warping path p between X and Y with respect to the

local cost measure c is defined by following equation.

cp(X ,Y ) :=
L

∑
l=1

c(xnl,yml).
�
 �	A.5

Furthermore, an optimal warping path between X and Y is a warping path p∗, which

has a total cost among all possible warping paths. The DTW distance DTW(X ,Y ) be-

tween X and Y is then defined as the total cost of p∗:

DTW(X ,Y ) : = cp∗(X ,Y )

= min{cp(X ,Y ) | p is an (N,M)-warping path}

�
 �	A.6

To determine an optimal path p∗, we need to calculate every possible warping path

between X and Y . But this procedure would lead to a computational complexity that

is exponential in the lengths N and M. However, there is an O(NM) algorithm based

on dynamic programming to calculate an optimal path p∗ as following. It defines the

prefix sequences X(1 : n): = (x1, . . . ,xn) for n ∈ [1:N] and Y (1:m): = (y1, . . .ym) for

m ∈ [1:M] and set

D(n,m) := DTW(X(1:n),Y (1:m)).
�
 �	A.7

The values D(n,m) define an N×M matrix D, which also referred as the accumu-

lated cost matrix. Obviously, one has D(N,M) = DTW(X ,Y ). In the following, a tuple

(n,m) representing a matrix entry of the cost matrix C or of the accumulated cost ma-

trix D will be referred to as a cell. The next theorem shows how D can be computed

efficiently.
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Theorem A.4.2 (Müller [124]). The accumulated cost matrix D satisfies the following

identities:

D(n,1) =
n

∑
k=1

c(xk,y1) for n ∈ [1:N],

D(1,m) =
m

∑
k=1

c(x1,yk) for m ∈ [1 : M], and

D(n,m) = min{D(n−1,m−1),D(n−1,m),D(n,m−1)}+ c(xn,ym)
�
 �	A.8

for 1 < n≤ N and 1 < m≤M. In particular, DTW(X ,Y ) = D(N,M) can be computed

with O(NM) operations.

Algorithm 16: Compute Optimal Warping Path
Input: Accumulated cost matrix D.
Output: Optimal warping path p∗.
Procedure: The optimal path p∗ = (p1, . . . , pL) is computed in reverse order of
the indices starting with pL = (N,M). Suppose pL = (n,m) has been computed.
In case (n,m) = (1,1), one must have L = 1 and we are finished. Otherwise,

pl−1 :=


(1,m−1), if n = 1
(n−1,1), if m = 1
argmin{D(n−1,m−1),
D(n−1,m),D(n,m−1)}, otherwise,

�
 �	A.9

where we take the lexicographically smallest pair in case “argmin” is not
unique.

Theorem A.4.2 facilitates a recursive computation of the matrix D. The initialization

can be simplified by extending the matrix D with an additional row and column and

formally setting D(n,0) = ∞ for n∈ [1:N], D(0,m) = ∞ for m∈ [1:M], and D(0,0) =

0. The recursion of (A.8) holds for n∈ [1 : N] and m∈ [1 : M]. Moreover, note that D can

be computed in a column-wise fashion, where the computation of the mth column only

requires the values of the (m−1)th column. This implies that if we only need the value

DTW(X ,Y ) = D(N,M), then the required storage space will be O(N). Similarly, we can

also proceed in a row-wise fashion, leading to O(M). In either case, the running time

is O(NM). Furthermore, to compute an optimal warping path p∗, the entire (N×M)-

matrix D is needed. The Algorithm 16 (adapted from [124] ) fulfills this task.
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A.4.1 Variations of DTW

Several types of modifications are proposed to better control the possible routes of the

warping paths as well as to speed up DTW computations. Modify in step size calculation

and local weights are two of them and we are going to discuss them in this section.

A.4.1.1 Step Size Condition

We already explained that the step size condition (iii) represents a kind of local con-

tinuity condition, which ensures that each element of the sequence X = (x1,x2, . . .xN)

is assigned to an element of Y = (y1,y2, . . . ,yM) and vice versa. Nevertheless, one

drawback of this condition is that a single element of one sequence may be assigned to

many consecutive elements of the another sequence, leading to vertical and horizontal

segments in the warping path, see Figure A.5-(a). Therefore, the warping path can be

stuck at some position with respect to another sequence.

To avoid such degenerations, we can modify the step size condition to constrain the

slope of the admissible warping paths. As a first example, we can replace the step size

condition (iii) of Definition A.4.1 by the condition pl+1− pl ∈ {(2,1),(1,2),(1,1)} for

l ∈ [1:L], as shown in Figure A.5-(b). This leads to warping paths having a local slope

within the bounds
1
2

and 2. Then for n ∈ [2:N] and m ∈ [2:N], the accumulated cost

matrix D can be computed by the recursion as following.

D(n,m) = min{D(n−1,m−1),D(n−2,m−1),D(n−1,m−2)}+ c(xn,ym)
�
 �	A.10

Here, we set the initial values as following.

D(0,0) = 0.

D(1,1) = c(x1,y1).

D(n,0) = ∞ for n ∈ [1:N].

D(n,1) = ∞ for n ∈ [2:N].

D(0,m) = ∞ for m ∈ [1:M].

D(1,m) = ∞ for m ∈ [2:M].

237



Chapter A. Appendix

(𝑛,𝑚 − 1)(𝑛 − 1,𝑚 − 1)

(𝑛,𝑚)(𝑛 − 1,𝑚)

(𝑛 − 2,𝑚 − 1)

(𝑛,𝑚)

(𝑛 − 1,𝑚 − 2)

(𝑛,𝑚)

(𝑛 − 3,𝑚 − 1) (𝑛 − 1,𝑚 − 1)

(𝑛 − 1,𝑚 − 3)

(𝑎) (𝑏) (𝑐)

Figure A.4: Illustration of three different step size conditions, which express different
local constraints on the admissible warping paths. (a) corresponds to the step size
condition (iii) of Definition A.4.1, source [124]

(𝑎) (𝑏) (𝑐)

Figure A.5: Three warping paths with respect to the different step size conditions indi-
cated by Figure A.4. (a) Step size condition of Figure-A.4-(a) may result in degener-
ations of the warping path. (b) Step size condition of Figure A.4-(b) may result in the
omission of elements in the alignment of X and Y . (c) Warping path with respect to the
step size condition of Figure A.4-(c), source [124]

Note that, with respect to the modified step size condition, there is a warping path

between two sequences X and Y if and only if the difference between the lengths N and

M is allowed to at most by a factor of two. Moreover, all elements of X need not be

assigned to some element of Y and vice versa as shown in Figure A.5-(b), where x1 is

assigned to y1, x3 is assigned to y2, but x2 is not assigned to any element of Y (i.e., x2 is
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omitted and does not cause any cost at all).

Similarly, we can avoid such omission while imposing constraints on the slope of

the warping path as shown in Figure-A.5-(c), where the recursion of the resulting accu-

mulated cost matrix D is given by

D(n,m) = min



D(n−1,m−1)+ c(xn,ym)

D(n−2,m−1)+ c(xn−1,ym)+ c(xn,ym)

D(n−1,m−2)+ c(xn,ym−1)+ c(xn,ym)

D(n−3,m−1)+ c(xn−2,ym)+ c(xn−1,ym)+ c(xn,ym)

D(n−1,m−3)+ c(xn,ym−2)+ c(xn,ym−1)+ c(xn,ym)

�
 �	A.11

for (n,m) ∈ [1:N]× [1 : M]\{(1,1)}, and we set the initial values as following.

D(1,1) = c(x1,y1).

D(n,−2) = D(n,−1) = D(n,0) = ∞ for n ∈ [−2:N].

D(−2,m) = D(−1,m) = D(0,m) = ∞ for m ∈ [−2:M].

In this case, the slopes of the resulting warping paths are lie between the values
1
3

and

3. Note that, this step size conditions enforce that all elements of X are aligned to some

element of Y and vice versa. In other words, in the recursion (A.11) all elements of X

and Y generate some cost in the accumulated cost matrix D - opposed to the recursion

(A.10). Figure A.5 illustrates the differences of the resulting optimal warping paths

computed with respect to different step size conditions.

A.4.1.2 Local Weights

We can add an additional weight vector (wd,wh,wv) ∈ R3 that improve the vertical,

horizontal, or diagonal direction in the alignment, yielding the recursion as following.

D(n,m) = min


D(n−1,m−1)+wd.c(xn,ym)

D(n−1,m)+wd.c(xn,ym)

D(n,m−1)+wd.c(xn,ym)

�
 �	A.12

for n ∈ [2:N] and m ∈ [2:M].
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Moreover, the other initial values are to be set as following.

D(n,1) =
n

∑
k=1

(wh.c(xk,y1)) for n > 1

D(1,m) =
m

∑
k=1

(wv.c(x1,yk)) for m > 1

D(1,1) = c(x1,y1).

The equally weighted case (wd,wh,wv) = (1,1,1) reduces to default (original) DTW

(equation A.8). Also note that for (wd,wh,wv) = (1,1,1), if we have a preference of

the diagonal alignment direction, then one diagonal step (cost of one cell) corresponds

to the combination of one horizontal and one vertical step (cost of two cells). To coun-

terbalance this preference, in general, it would better to choose (wd,wh,wv) = (2,1,1).

Similarly, we can also apply other weighting factors for other step size conditions.

A.4.2 Subsequence DTW

If we need to find a subsequence within the longer sequence that optimally matches with

the shorter sequence as shown in Figure A.4.1. Then the problem of finding optimal

subsequences can be solved by a variant of dynamic time warping, which is going to

describe in this section.

Figure A.6: Optimal time alignment of the sequence X with a subsequence of Y .
Aligned points are indicated by the arrows, source [124]

Let us suppose X = (x1,x2, . . . ,xN), and Y = (y1,y2, . . . ,yM) are the feature se-

quences such that the length of a sequence Y (i.e., M) is much larger than the length of a
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sequence X (i.e., N). Then, our goal is to find a subsequence Y (a∗:b∗)= (ya∗,ya∗+1, . . . ,yb∗)

with 1 ≤ a∗ ≤ b∗ ≤ M that minimizes the DTW distance to X over all possible subse-

quences of Y as following.

(a∗,b∗) = argmin
(a,b) : 1≤a≤b≤M

(DTW(X ,Y (a:b))).
�
 �	A.13

After the small modification in the initialization of the DTW algorithm described in

Theorem A.4.2, an optimal alignment between X and the subsequence Y (a∗:b∗) as well

as the indices a∗ and b∗ can be computed. Let modify the definition of the accumulated

cost matrix D by setting D(n,1) =
n

∑
k=1

c(xk,y1) for n ∈ [1:N] and D(1,m) = c(x1,ym)

(opposed to D(1,m) =
m

∑
k=1

c(x1,yk) for m ∈ [1:M]). Then the remaining values of D

can be defined recursively as explained by equation A.8 for n ∈ [2:N] and m ∈ [2:N].

An extended accumulated cost matrix can also be defined by setting D(n,0) = ∞ for

n ∈ [0:N] and D(0,m) = 0 (opposed to D(0,m) = ∞) for m ∈ [0:M]. The index b∗ can

be determined from D as following.

b∗ = argmin
b∈[1:M]

D(N,b).
�
 �	A.14

To determine a∗ and the optimal warping path between X and the subsequence

Y (a∗:b∗), we have to apply the Algorithm 16, but in this time, we need to start with

pL = (N,b∗) as following. Let p∗ = (p1, . . . , pL) be the resulting path, then a∗ ∈ [1:M]

be the maximal index such that p = (a∗,1) for some l ∈ [1:L]. That is all elements of

Y to the left of ya∗ and to the right of yb∗ are left unconsidered in the alignment and

do not cause any additional costs. The computational complexity of the subsequence

DTW algorithm is O(NM). Note that, in general, the optimal alignment of the subse-

quence Y (a∗:b∗) is not uniquely defined because there may be several choices for b∗ in

equation A.14, and in the construction of a∗.

Let define a distance function by an equation A.15 to explain how the accumulated

cost matrix D can be used to derive an entire list of subsequences of Y that are optimally

close to X with respect to the DTW distance.
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∆: [1:M]→ R ∆(b) = D(N,b)
�
 �	A.15

The equation A.15 assigns to each index b ∈ [1:M] and the minimal DTW distance

∆(b) can be achieved between X and a subsequence Y (a:b) of Y ending in yb. For

each b ∈ [1:M], the DTW-minimizing a ∈ [1:M] can be computed analogously to a∗

by using the Algorithm 16, which is start with pL = (N,b). Note that if ∆(b) is small

for some b ∈ [1 : M] and if a ∈ [1:M] be the corresponding DTW-minimizing index,

then the subsequence Y (a : b) is close to X . Thus, this observation suggests the Algo-

rithm 17 (adapted from Müller [124] ) to compute all (up to some specified overlap)

subsequences of Y that is similar to X .

Algorithm 17: Compute Similar Subsequences

Input: X = (x1, . . . ,xN) query sequence
Y = (y1, . . . ,yM) database sequence

Output: Ranked list of all (essential distinct) subsequences of Y that have a
DTW distance to X below the threshold τ.

(1) Initialize the ranked list to be the empty list.
(2) Compute the accumulated cost matrix D w.r.t. X and Y .
(3) Determine the distance function ∆ by an equation A.15
(4) Determine the minimum b∗ ∈ [1:M] of ∆.
(5) If ∆(b∗)> τ, then terminate the procedure.
(6) Compute the corresponding DTW-minimizing index a∗ ∈ [1:M].
(7) Extend the ranked list by the subsequence Y (a∗:b∗).
(8) Set ∆(b) = ∞ for all b within a suitable neighborhood of b∗.
(9) Continue with Step (4).

We can notice that in the Step (8) of Algorithm 17, it exclude an entire neighborhood

of b∗ from further consideration. Therefore, it avoids the ranked output list, which

contains many subsequences that only differ by a slight shift. For example, if Y (a:b) is

in the list, then we can prevent that Y (a:b+1) is in the list as well. Hence, depending

on the application, we may choose a fixed size of the neighborhood around b∗ or adjust

the size according to the local property of ∆ around b∗.
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